
DMS-App-API

Table of Contents
1. DMS-App-API .. 3

1.1. Introduction .. 3
1.1.1. About the DMSApp API ... 3
1.1.2. Scope of functions of DMSApp .. 3
1.1.3. Prerequisites ... 3

1.2. Notes about support for API programming ... 4
1.3. Technical background information ... 4

1.3.1. Basic information about mapping ... 4
1.3.2. Basic knowledge about authentication .. 5
1.3.3. Basic information about write access .. 5

1.4. Using the API functions .. 5
1.4.1. General information about API functions (DMSApp) .. 5
1.4.2. Calling the web interface with a URL (DMSApp) .. 8
1.4.3. Connecting external systems (DMSApp) .. 19
1.4.4. Adding your own functions (DMSApp) .. 70

2

1. DMS-App-API

1.1. Introduction
This topic provides you with general information about the DMSApp API, its scope of functions and
useful information to know when programming functions and customizations.

1.1.1. About the DMSApp API
In this documentation, you can learn how to use the programming interface of DMSApp for your own
developments.

This documentation is designed for developers of applications that are to be run in the d.ecs architecture
system environment. DMSApp is a core component in the d.ecs architecture system environment and
provides functions related to documents and dossiers within the framework of a d.3ecm system.

JSON objects, URLs, and query parameters can be enhanced at any time while the API is still valid.
Only the extension points, properties, objects and parameters for API programming described in this
documentation are released. Each chapter indicates whether the URL for retrieving the HTML page,
the JSON representation or the extension point is released. The HTML page is used exclusively for
UI integration, must not be evaluated with programs and may be changed at any time without prior
notification. Any properties that are not described in this documentation are not permitted for use.

This documentation is available to development partners of d.velop AG online on the Service Portal.
Passing this documentation or parts of it on to third parties is not permitted. For requests as part of the
development partnership, only the online documentation applies.

Please note that your software accesses data stored and configured in d.3ecm by your customers via this
interface and also affects the procedures in the d.3ecm system. Please handle it with care and make sure
that your application is part of an existing collaboration of several applications. The improper use of this
interface may lead to changed application procedures and the loss of data.

1.1.2. Scope of functions of DMSApp
DMS app is the core HTTP interface to essential functionality related to documents and dossiers in the
d.3ecm environment. You can use the DMS app, for example, to create mappings, create, edit and update
documents. You can also navigate through dossier structures and display detailed information using the
DMS app. In addition, the DMS API offers lots of extension points for your own features and functions.

1.1.3. Prerequisites
This documentation is designed for administrators of a d.3ecm system and for developers creating apps
and extensions.

You should be familiar with the following subjects to use the API:

• You should have a good knowledge of the d.3ecm architecture.
• You should be familiar with the authentication using the d.ecs identity provider API in the d.3ecm

context.
• You should have knowledge in the development of web-based apps and be confident in dealing with

the following detailed topics:
• Hypertext Transfer Protocol (HTTP) (RFC 7230)
• RESTful HTTP interfaces
• JavaScript Object Notation JSON) (RFC 7159)
• Hypertext Application Language in connection with the JavaScript Object Notation (HAL+JSON)
• UriTemplate (RFC 6570)

DMS-App-API

3

• If you want to provide your own user interface, you should be familiar with HTML, CSS and responsive
web design. To facilitate a consistent look & feel, it is recommended to know how to use the frame-
work Material Design. For more recommendations about how to design see the Developer Portal.

• Additionally, knowledge in administering a web server is a benefit.

1.2. Notes about support for API programming
Please note that your software accesses stored and configured data in d.3ecm owned by your customers
via this interface and also affects the procedures in the d.3ecm system. Please handle it with care and
make sure that your application is part of an existing collaboration of several applications. The improper
use of this interface can lead to changed application procedures and the loss of data.

Software developments with this programming interface are individual developments. The program code
generated by you is not subject to the maintenance and support conditions of the products of d.velop
AG. Our support will be pleased to help you, but your requests are subject to additional charges, if it is
not lead back to an error in our products.

For any questions about the prerequisites and the software development with d.3ecm, please contact
the Technology Partners Management of d.velop AG.

1.3. Technical background information
It is recommended to be acquainted with the system landscape, the interoperability and the architecture
of d.3ecm.

In addition, the authentication mechanism in the d.3ecm system landscape is of high importance. You
can find general information about authentication under Basic knowledge about authentication.

You can find general information about using the DMSApp mapping feature under Basic information
about mapping.

You can find general information about writing access to the DMSApp under Basic information about
write access.

1.3.1. Basic information about mapping
The mapping feature in DMSApp lets you establish a connection between any third-party application,
such as an e-mail application or ERP system, and a d.3 repository. This mapping feature is the basis for
creating extensions and functions that make it easier for you to program functions, e.g. saving elements
that come from another ERP system.

For example, if you would like to store your e-mails in a d.3 repository by default, it is useful to directly
map the item "E-mail" to a d.3 category and the related d.3 properties. You can save your users from
manually mapping properties and categories if you define the mapping as an administrator. Thus, your
source system is the e-mail application, the destination system is a d.3 repository. By default, any e-mail
has specific properties, among them are, for example, the sender and the recipient as well as the subject
of an e-mail. You can use these typical properties for an e-mail to map them to a d.3 category and the d.3
properties. This mapping automatically maps the e-mail to the correct category, for example. The typical
e-mail properties are then automatically written into d.3 properties.

To use the mapping feature effectively, you can make the data model of a third-party application
available as a source to connect it to the data model of the d.3ecm target (DMSApp). The data model
description is designated as the source.

For instance, you may want to store your data from an e-mail application (e-mails, attachments) in a d.3
repository and save your users from manually mapping d.3 categories and d.3 properties. In this case,
the e-mail application is your source system. The e-mail is a source of this source system, which has
certain categories and properties by default. These typical categories and properties for the source must
be “translated” into the d.3ecm data model. This method is the only way for you to ensure that the fields
are mapped correctly by default when you save the items from the e-mail application.

DMS-App-API

4

https://developer.d-velop.de/designsystem/de

An e-mail application provides you with a variety of metadata. This may include the sender, recipient
and subject line, for example. You can connect this source metadata to the metadata in a d.3 repository,
where the items from the source are saved. For example, in a d.3 repository, you can map an e-mail to
the document type Correspondence and the subject (source property Mail_Subject) to the d.3 property
Subject.

Understanding the relationship between the possible categories and properties of a source and the
categories and properties in d.3ecm is important for mapping.

1.3.2. Basic knowledge about authentication
The app d.ecs identity provider is responsible for authentication in the architecture of a d.3ecm environ-
ment. Almost all the REST resources of the DMSApp must be called with authentication. In the following
descriptions of the API functions, you are informed if you can call a REST resource anonymously.

For information about how the identity provider app works, see the identity provider API documenta-
tion.

1.3.3. Basic information about write access
When calling the API via the HTTP verbs POST, PUT, DELETE and PATCH, you must specify the Origin
header. The header value must correspond to the calling URL without path. The header is not required
for read access (e.g. GET).

It is necessary to specify a value for Origin in order to prevent CSRF (Cross-Site Request Forgery) attacks.

Request

PUT /dms/sampleuri
Origin: https://samplehost

If the header is missing, the DMSApp will reply with HTTP 403 Forbidden.

1.4. Using the API functions
In the following chapters, you can learn more about the various options for using the DMSApp user
interfaces to meet your requirements.

• General information about API functions (DMSApp)
• Calling the web interface with a URL (DMSApp)
• Connecting external systems (DMSApp)
• Adding your own functions (DMSApp)

1.4.1. General information about API functions (DMSApp)
In this chapter, you can find all the topics that apply to all types of use of the API functions in DMSApp.

DMS-App-API

5

• Determining a repository
• Overview of formats for errors

Determining a repository
Released: JSON representation

To implement your own functions, you always need the ID of the repository. With DMSApp, you
have the option of accessing different repositories if you have configured multiple repositories in your
company or organization.

If, for example, you want to start a search, you must first select a repository. To specify the repository,
execute a HTTP GET request for the REST resource /dms.

The repository ID is determined in two steps:

• Determining the link relation for retrieving the list of repositories
• Retrieving the list of repositories

Determining the link relation for retrieving the list of repositories

The URL for a repository is available as a link relation in the response to the HTTP GET request.

Request

GET /dms
Accept: application/hal+json

Response

{
 _links: {
 repo: {
 href: "/dms/r/{repositoryid}",
 templated: true
 }
 }
}

Retrieving the list of repositories

To call repository-specific functions, you require the repository ID.

Replace the {repositoryid} placeholder in the URL "/dms/r/{repositoryid}" with the repository ID. If you
do not know the repository ID, open the URL /dms/r as follows:

Request

GET /dms/r
Accept: application/hal+json

In the response, you receive an array of repositories in which the repository ID is listed as the id property
and the repository's display name is listed as the name property.

Response

{
 repositories: [
 {
 id: "dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27",

DMS-App-API

6

 name: "Contoso (A)"
 },
 ...
]
}

If you already know the repository ID, then you can replace the {repositoryid} placeholder in the
URL /dms/r/{repositoryid} with the repository ID. When you open the URL with the repository ID, you
receive the following result:

Request

GET /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27
Accept: application/hal+json

The JSON object in the response is the same object as the object in the list of JSON objects from the
request for the URL /dms/r.

Response

{
 id: "dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27",
 name: "Contoso (A)"
}

Overview of formats for errors
Released: JSON representation

In this chapter, you will learn more about the basics of error handling and the format in which errors are
returned.

Depending on the result of the processing of an HTTP request, the request is answered with different
HTTP status codes. Descriptive information can be returned as JSON as an option.

Example for a response upon a failed request:

Response

HTTP/1.1 400 BadRequest

{
 "reason": "10019: Missing value for a mandatory property.",
 "severity": 1,
}

Description of parameters for response upon a failed request:

Property Description

reason An optional short description of why the error has occurred. This text is used as the error message’s title.

hint An optional message for the user containing troubleshooting tips.

details Optional detailed information about the error.

severity Optional error severity. Possible values are:

Success = 0,
Information = 1,
Warning = 2,
Error = 3

DMS-App-API

7

1.4.2. Calling the web interface with a URL (DMSApp)
In this section, you can learn how to reach the HTML user interfaces of the DMSApp using URLs. You
can also use these URLs to integrate the HTML user interfaces into your own application.

• Displaying the storage dialog
• Viewing the details of a DMS object
• Displaying the preview of a DMS object
• Searching for DMS objects

Displaying the storage dialog
Released: HTML page

The storage dialog for the Storage feature allows you to save and update DMS objects.

After you open the storage dialog in the browser and enter values, you are shown the link for calling
the displayed dialog, including your entered values, in the URL. You can use this link as a bookmark in
the browser, for example, so that you can always display the storage dialog with the entered values. This
chapter explains how this link is structured.

If you want to connect an external system, you can find more information about storing new DMS
objects using the storage dialog in Storing new DMS objects with user interaction. For information
on how to prepare and display the storage dialog for updating from an external system, see chapter
Updating DMS objects with user interaction.

Determining the link relation for displaying the storage dialog

If you call the root resource /dms, you receive in response a JSON object with the link relation new,
which you can use to display the storage dialog, as the response.

The request for the root resource /dms:

Request

GET /dms
Accept: application/hal+json

The JSON object of the root resource contains the link relation new:

Response

{
 _links: {
 new: {
 href: "/dms/new/"
 }
 }
}

Specifying response control parameters

You control the behavior of the storage dialog using the following parameters. You must encode the
URL parameters (e.g. spaces in %20). The length of the encoded query parameter is limited to 2000
characters.

Parameter Description

type Specifies the category (storage type) in the storage dialog. The only possible value is dossier. type opens the
storage dialog for creating dossiers.

DMS-App-API

8

Parameter Description

repositor-
yid

Defines the repository ID.

objectdefi-
nitionid

Specifies the category to be selected in the storage dialog. Specify the ID of a category. If you do not make a
specification, no category is selected.

Examples (not encoded):

• objectdefinitionid=RECH: Selects the category "Invoice" ("RECH") for storage.

properties A JSON object that you can use to set the following properties:

• Document number: property_document_number
• Variant number: property_variant_number
• Document status: property_state (the possible values are Be for Processing (Bearbeitung), Pr for Verification

(Prüfung), Fr for Release (Freigabe) and AR for Archive (Archiv).
• Editor: property_editor (d.3 user ID)
• Remark 1: property_remark1
• Remark 2: property_remark2
• Remark 3: property_remark3
• Remark 4: property_remark4
• Color code: property_colorcode (is an integer value between 1 and 24 that corresponds to the number of the

color code you want to assign).

You can also set values for advanced properties. The ID of the property corresponds to the identifier (RID) of the
property. You can find the ID in the URL in the address bar of your browser. After you open the storage dialog in
the browser and enter values, you are shown the link for calling the displayed dialog, including your entered values,
in the URL.

You can set values for advanced properties as follows.

• properties={"227"=["KND001"]}

For multi-values, you must also set the row number:

• properties={"232":{"1":"Name1@contoso.com", "2":"Name2@contoso.com"}}

Opening the URL for the storage dialog

You have generated a URL for the storage dialog. If you open the URL in the browser, the storage dialog
is loaded with the transferred parameters.

DMS-App-API

9

Note
Use cases for various calls of the storage dialog:

• Storage in a category: Add the part objectdefinitionid=<category ID> to the URL.

https://<Base address>/dms/new/?repositoryid=<RepositoryID>&objectdefinitio-
nid=RECH

• Storage with an alphanumeric property: Add properties={"227":"KND001"} (not enco-
ded) to the properties parameter in the URL to propose the property field with the RID
227 (customer number) and the value "KND001" as the customer number.

https://<Base address>/dms/new/?repositoryid=<RepositoryID>&objectdefinitio-
nid=RECH&properties=%7B%22227%22%3A%22KND001%22%7D

• Storage with multiple properties: Add properties={"227":"KND001","231":"-100"} (not
encoded) to the properties parameter in the URL to propose the property field with
the RID 227 (customer number) with the value "KND001" and the property field with
the RID 231 (invoice amount) with the value -100.

https://<Base
address>/dms/new/?repositoryid=<RepositoryID>&objectdefinitionid=RECH&proper-
ties=%7B%22227%22%3A%22KND001%22%2C%22231%22%3A%22-100%22%7D

• Storage with multi-values: Add properties={"232":{"1":"Name1@contoso.com",
"2":"Name2@contoso.com"}} (not encoded) to the properties parameter in the URL
to propose the property field with the RID 232 (e-mail) with the values "Name1@con-
toso.com" and "Name2@contoso.com".

https://<Base address>/dms/new/?repositoryid=<RepositoryID>&objectdefinitio-
nid=RECH&proper-
ties=%7B%22227%22%3A%22KND001%22%2C%22231%22%3A%22-100%22%2C%
22232%22%3A%7B%221%22%3A%22Name1%40conto-
so.com%22%2C%20%222%22%3A%22Name2%40contoso.com%22%7D%7D

Viewing the details of a DMS object
Released: HTML page

The detail view offers you a number of different perspectives for the requested item, such as Properties,
View and Notes.

To find our how to view the detail view for an item, see the Retrieving and viewing the details of a DMS
object chapter.

Displaying the preview of a DMS object
Released: HTML page

The View perspective offers you a preview for the selected item. You can use the content of the
perspective for an item directly without loading the other perspectives.

To display only the preview of a DMS object, you must perform the following steps:

• Determining the URL for a repository
• Determine the link relation for displaying the preview
• Open the URL for displaying the preview

Determining the URL for a repository

DMS-App-API

10

In the chapter Determining a repository, you can learn how to determine the URL for a repository.

Determine the link relation for displaying the preview

You open the URL for a repository as follows:

Request

GET /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27
Accept: application/hal+json

The JSON object for a repository contains the link relation dmsobjectpreview with the placehold-
er dmsobjectid.

Response

{
 _links: {
 dmsobjectpreview: {
 href: "/dms/r/dee1f3d3-
eae8-5d9d-84d8-2d758c5ddc27/o2/{dmsobjectid}/preview{?isReadonly}",
 templated: true
 }
 },
 id: "dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27"
}

Replace the {dmsobjectid} placeholder with the ID of the DMS object that you want to view directly in
the preview.

Specifying response control parameters

Parameter Description

isReadonly Specifies whether the preview is displayed in read mode (default value: false). In read mode, it is also not possible to
apply visual annotations to PDF documents, for example.

Use the parameter isReadonly=true if the preview is displayed in the inner supply (InnerSupply) of the operating
concept.

Open the URL for displaying the preview

You open the preview as follows:

Request

GET /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2/P0123456789/preview
Accept: text/html

The preview of the DMS object is then loaded as a result.

Searching for DMS objects
You can integrate the HTML pages of the Search feature in your own HTML user interface to simplify
tasks that recur frequently for users, for example.

You can integrate the following tasks:

• Defining search operations
• Viewing the results of a search operation

DMS-App-API

11

Parameters that you can use both for search operations and to display the result list are explained for
you in the chapter Defining the parameters for a search operation and a result list.

Defining search operations
Released: HTML page

You can use the Search feature to find saved items in the repository, provided that you have the
appropriate authorizations. Based on their area of responsibility, users frequently search for the same
items, which they can find quickly by using selected properties and categories. You can simplify the
search process by providing users with a predefined search operation. In the search operation, you have
already defined the values that your users otherwise have to enter repeatedly.

To make a predefined search operation available, transfer the parameters of the URL.

You can call the search operation in two ways:

• Call the search operation without specifying a specific repository. In this case, the last selected
repository is used for the search operation. However, the user can change the repository at any time.

• You call the search operation for a specific repository, which means that the user can no longer change
the repository.

Searching without specifying a repository

If you want to define the search operation without specifying a repository, proceed as follows:

When you open the URL /dms, you are notified of the URL for the search operation, including the
available parameters, with the following HTTP response:

Request

GET /dms
Accept: application/hal+json

The JSON object for the root resource contains the search link relation with placeholders for the values
used to perform the search for DMS objects.

Response

{
 _links: {
 search: {
 href: "/dms/s/{?
objectdefinitionids,fulltext,properties,showresultlist,repositoryid}"
 templated: true
 }
 }
}

Searching in a predefined repository

If you want to define a search operation for a specific repository, you must first determine the URL for
the repository. In the chapter Determining a repository, you can learn how to determine the URL for a
repository.

Once you have determined the URL for the repository (for example: /dms/r/dee1f3d3-
eae8-5d9d-84d8-2d758c5ddc27) and called the URL using HTTP GET, you receive the following result,
which contains the repository-specific URL for the search operation:

Request

DMS-App-API

12

GET /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27
Accept: application/hal+json

The JSON object for the repository contains the search link relation with placeholders for the values
used to perform the search for DMS objects.

Response

{
 _links: {
 search: {

href: "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/s/{?
objectdefinitionids,fulltext,properties,showresultlist}"
 templated: true
 }
 },
 id: "dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27"
}

Specifying response control parameters

You control the system response for searching and displaying using the following parameters:

Parameter Description

showresultlist If values are available for a search operation, this specifies whether the search operation is executed directly and
the results of the search query are displayed (default value: false).

repositoryid Defines the repository ID.

For descriptions of the objectdefinitionids, fulltext and properties parameters, see the Defining the
parameters for a search operation chapter.

Note
You can also define multiple values for a parameter, provided that facets are displayed for
the corresponding property. If no facets for viewing have been defined for the property,
the last value is always adopted for the search operation.

Opening the URL for the search operation

Once you have created a URL for the search operation, you can then call the results using the corre-
sponding requests.

Request without a repository ID:

Request

GET
/dms/s/?objectdefinitionids=["RECH"]&fulltext=Mustermann&properties={"227":
["KND001"]}&repoid=dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27
Accept: text/html

Request with a repository ID:

Request

GET /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/s/?
objectdefinitionids=["RECH"]&fulltext=Mustermann&properties={"227":

DMS-App-API

13

["KND001"]}
Accept: text/html

The search operation in the Search feature is then loaded with the transferred parameters as a result.

Note
You must encode the URL parameters (e.g. spaces in %20). The length of the encoded
query parameter is limited to 2000 characters.

Use cases for various search queries (not encoded):

• Searching across a category: Add the part objectdefinitionids=["<category ID>"] to the
URL.

https://<Base address>/dms/r/<RepositoryID>/s/?fulltext=5353&objectdefinitio-
nids=["RECH"]

• Searching across several categories: Add the part objectdefinitionids=["<category
ID>","<category ID>"] to the URL.

https://<base address>/dms/r/<RepositoryID>/s/?fulltext=5353&objectdefinitio-
nids=["RECH","AUFT"]

• Searching for PDF documents restricted to the file type: Add the part proper-
ties={"property_filetype":["<File type>"]} to the URL.

https://<base address>/dms/r/<RepositoryID>/s/?fulltext=test&properties={"proper-
ty_filetype":["pdf"]}

• Searching for an alphanumeric property: Add properties={"227":["KND001"]} (not en-
coded) to the properties parameter in the URL to find the property field with the RID
227 (customer number) and the value "KND001" as the customer number.

https://<base address>/dms/r/<RepositoryID>/s/?objectdefinitionids=["RECH"]&full-
text=&properties={"227":["KND001"]}

• Searching for multiple properties: Add properties={"227":["KND001"],"231":["|-100"]}
(not encoded) to the properties parameter in the URL to find the property field with
the RID 227 (customer number) with the value "KND001" and the property field with
the RID 231 (invoice amount) with a value lower than or equal to 100.

https://<base address>/dms/r/<RepositoryID>/s/?objectdefinitionids=["RECH"]&full-
text=&properties={"227":["KND001"],"231":["|-100"]}

Viewing the results of a search operation
Released: HTML page

When defining search operations, you can specify that only the result list is to be displayed. Your users
can then view the results of a search directly and no longer have to specify the individual properties. The
result list makes it easy for your users to continue their work. However, the users can no longer change
the search criteria that led to the result.

To display only the results of a search operation, you must perform the following steps:

• Determining the URL for a repository
• Determine the link relation for retrieving the results of a search operation
• Specify response control parameters

DMS-App-API

14

• Open the URL for the results

Once you have created a mapping for a source, you can also display the results of a search operation
in other ways. For additional information see chapter Retrieving and viewing the results of a search
operation.

Determining the URL for a repository

In the chapter Determining a repository, you can learn how to determine the URL for a repository.

Determining the link relation for retrieving the results of a search operation

You open the URL for a repository as follows:

Request

GET /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27
Accept: application/hal+json

The JSON object for the repository contains the searchresult link relation with placeholders for the
values used to perform the search for DMS objects.

Response

{
 _links: {
 searchresult: {

href: "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/sr/{?
objectdefinitionids,fulltext,properties,propertysort,ascending,showdetails}"
 templated: true
 }
 },
 id: "dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27"
}

Specifying response control parameters

Use the following parameters to control the system response when viewing the results:

Parameter Description

showde-
tails

If the search operation finds a single document, this parameter specifies whether this document is displayed directly
in the detail view (default value: false).

DMS-App-API

15

Parameter Description

property-
sort

Specifies the ID of the property that is used to sort the result. If no sort property is specified, the default sort order
using the Last modified sort criterion is applied.

• Caption/Title: property_caption
• Owner: property_owner
• File type: property_filetype
• Remark: property_remark
• Last access: property_access_date
• Editor: property_editor
• Document ID: property_document_id
• Document number: property_document_number
• File size: property_size
• Document status: property_state
• Last modified: property_last_modified_date
• Last file update: property_last_alteration_date
• Color code: property_colorcode
• Category: property_category
• Created on: property_creation_date
• Last access: property_access_date

You can also sort the result list based on an advanced property. The ID of the property corresponds to the ID (RID)
of a property that you can determine for each advanced property in d.3 admin.

ascending Specifies the direction of the sort order.

• ascending=true: results in an ascending sort order (from small to large (A-Z) and from old to young).
• ascending=false: results in an descending sort order (from large to small (Z-A) and from young to old).

If the ascending parameter is not explicitly specified, the ascending sort order is applied. This is not true for the
default sort order: If the Last modified criteria is used for sorting and the sort order is not specified, the sort order
will be descending.

In addition to this, dossiers are displayed prior to documents in the result list. Within documents and dossiers, the
items are sorted by the sorting criterion.

children_of Specifies the document ID for which the linked direct child items are searched.

For descriptions of the objectdefinitionids, fulltext and properties parameters, see the Defining the
parameters for a search operation chapter.

Opening the URL for the results

Once you have created a URL, you can then open the results as follows:

Request

GET /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/sr/?
objectdefinitionids=["RECH"]&fulltext=Mustermann&properties={"227":
["KND001"]}
Accept: text/html

The result of the search operation is then loaded.

DMS-App-API

16

Note
You must encode the URL parameters (e.g. spaces in %20). The length of the encoded
query parameter is limited to 2000 characters.

Use cases for various result lists (not encoded):

• Searching across a category: Add the part objectdefinitionids=["<category ID>"] to the
URL.

https://<Base address>/dms/r/<RepositoryID>/sr/?fulltext=5353&objectdefinitio-
nids=["RECH"]

• Searching across several categories: Add the part objectdefinitionids=["<category
ID>","<category ID>"] to the URL.

https://<base address>/dms/r/<RepositoryID>/sr/?fulltext=5353&objectdefinitio-
nids=["RECH","AUFT"]

• Searching for PDF documents restricted to the file type: Add the part proper-
ties={"property_filetype":["<File type>"]} to the URL.

https://<base address>/dms/r/<RepositoryID>/sr/?fulltext=test&properties={"proper-
ty_filetype":["pdf"]}

• Searching for an alphanumeric property: Add properties={"227":["KND001"]} (not en-
coded) to the properties parameter in the URL to find the property field with the RID
227 (customer number) and the value "KND001" as the customer number.

https://<base address>/dms/r/<RepositoryID>/sr/?objectdefinitionids=["RECH"]&full-
text=&properties={"227":["KND001"]}

• Searching for multiple properties: Add properties={"227":["KND001"],"231":["|-100"]}
(not encoded) to the properties parameter in the URL to find the property field with
the RID 227 (customer number) with the value "KND001" and the property field with
the RID 231 (invoice amount) with a value lower than or equal to 100.

https://<base address>/dms/r/<RepositoryID>/sr/?objectdefinitionids=["RECH"]&full-
text=&properties={"227":["KND001"],"231":["|-100"]}

• Defining the sort order of the result list based on the title: Complete the URL by the
part propertysort=property_caption.

https://<base address>/dms/r/<RepositoryID>/sr/?fulltext=&objectdefinitio-
nids=["RECH"]&propertysort=property_caption

As response you will receive the HTML page with the result list. If there is an error, you will receive
an HTML page that describes the error in more detail. If errors occur, you must correct the incorrect
request.

Defining the parameters for a search operation and a result list
If, for example, you want to provide your users with a predefined search operation or result list, you can
specify a variety of parameters. Usually, the full-text search in a d.3 repository is not specific enough.
Therefore, you can restrict the search query by using query parameters.

You must encode the URL parameters (e.g. spaces in %20). The length of the encoded query parameter is
limited to 2000 characters.

DMS-App-API

17

Parame-
ter

Description

objectde-
finitio-
nids

Sets the categories used for searching items. You can define at least one category. Specify the ID of a category. If this
value is not specified, the search is done across all categories in a d.3 repository.

Examples (not encoded):

• objectdefinitionids=["RECH"]: for performing a search across the category "Invoice" ("RECH").
• objectdefinitionids=["RECH","AUFT"]: for performing a search across the categories "Invoice" ("RECH") and "Or-

ders" ("AUFT").

fulltext Specifies a full-text keyword.

proper-
ties

Specifies the search restriction based on the properties of documents and dossiers. You can use the following criteria
to restrict a search operation:

• Document ID: property_document_id
• File type: property_filetype
• Document number: property_document_number
• Document status: property_state (allowed values are Be for Processing (Bearbeitung), Pr for Verification (Prüfung),

Fr for Release (Freigabe) and AR for the status Archive (Archiv).
• Editor: property_editor (d.3 user ID)
• File name: property_filename
• Import date: property_creation_date
• File size: property_size (when searching for the file size, the size must be specified in bytes and as an integer. A

search within a specific range can be done using the separator pipe and minus character (|-): Search for documents
whose document file is smaller than or equal to 1024 bytes with the expression {"property_size":["|-1024"]}.

• Last modified: property_last_modified_date
• Last file update: property_last_alteration_date
• Access date: property_access_date
• Remark: property_remark
• Color code: property_colorcode (is an integer value between 1 and 24 that corresponds to the number of the color

code you want to assign).
• Variant number: property_variant_number

You can define at least one value for each property.

Examples (not encoded):

• properties={"property_filetype":["docx"]}: for searching the file type "docx".
• properties={"property_filetype":["docx","pdf"]}: for searching for items with the file type "docx" or "pdf".

Restriction in relation to the definition of a search operation: You can also define multiple values for a parameter,
provided that facets have been configured for the corresponding property. If no facets for viewing have been
configured for the property, the last value is always adopted for the search operation.

You can also limit the result list and search operation based on an advanced property. The ID of the property
corresponds to the ID (RID) of a property that you can determine for each advanced property in d.3 admin.

Examples (not encoded):

• properties={"227":["KND001"]}: for searching for items that have the advanced property with the ID "227" and this
property has the value "KND001".

• properties={"227":["KND001","KND002"]}: for searching for items that have the advanced property with the ID
"227" and this property has the value "KND001" or "KND002".

You can also use several properties as search restrictions simultaneously.

Examples (not encoded):

• properties={"227":["KND001"],"231":["|-100"]}: for searching for items with the customer number (advanced prop-
erty with the ID "227") "KND001" and an invoice amount (advanced property with the ID "231") lower than or
equal to 100.

• properties={"227":["KND001"],"property_filetype":["pdf"]}: for searching for items with the customer number (ad-
vanced property with the ID "227") "KND001" and the file type “pdf”.

DMS-App-API

18

Note
Specific values for the properties parameter related to the various options for restricting
the result in a targeted way:

1. Search for a numeric value or a money value:
Specify the value without using a thousand separator. The decimal separator is the
period (.). Example: For the value 1,000.20 EUR specify 1000.20.

2. Search for a date and time:
Specify the date in the format YYYY-MM-DD. Example: Enter 2014-12-05 for the
date 12/05/2014 (MM/DD/YYYY).
Time is specified in the format YYYY-MM-DDTHH:mm:ss+01:00. You must encode
the plus character (+) with %2b. Example: 2015-02-18T23:59:59%2b01:00 for
02/18/2015 at 11:59 p.m. and 59 seconds in the time zone UTC+1 for standard
time in Germany.

3. Search for items that are located in a specific range:
To search in a range, use a combination of the pipe and minus character (|-) as
separators. Examples for a numeric field with the ID "231":

• Values greater than or equal to 100: {"231":["100|-"]}
• Values smaller than or equal to 100: {"231":["|-100"]}
• Values between 100 and 200: {"231":["100|-200"]}

1.4.3. Connecting external systems (DMSApp)
In this chapter, you can learn how to connect external systems (third-party applications) to DMSApp to
create mapping in DMSApp. From the perspective of DMSApp, an external system represents a source
system. In the Basic information about mapping chapter, you can find general information for helping you
to create mappings.

• Defining a source system
• Retrieving the default source system for a d.3 repository
• Retrieving and viewing the results of a search operation
• Retrieving and viewing the details of a DMS object
• Storage of DMS objects
• Deleting the current version of a DMS object without user interaction
• Retrieving, saving and editing mapping
• Retrieving and saving the notes of a DMS object
• Retrieving and displaying the versions of a DMS object
• Linking DMS objects
• Removing a DMS object link

Defining a source system
Released: Extension point

If you have an system that provides output data (e.g. an e-mail application or an ERP system), you must
prepare the items of the d.3 repository source system for the creation of mapping. An item in a source
system is referred to as a source. A source contains source properties and source categories. By defining
a source, you give DMSApp the opportunity to connect the identifier for the source metadata to the
identifiers for the d.3 repository metadata.

Preparing your app

To ensure that DMSApp can find source systems, your app must provide this user interface. To find apps
that act as source systems, DMSApp uses the concept of an HTTP GET request for the root resource

DMS-App-API

19

(systemBaseUri path with the app name) for the apps. All apps registered to the d.ecs http gateway will
be requested. Make sure that the administrator did not actively exclude your app.

Providing the URL for the sources

The root resources for the apps are requested cyclically. The response of an app is then checked to
determine whether a link relation with the name sources is included. This link relation serves as the
signal that the app, acting as the source system, offers at least one source for DMSApp. DMSApp
executes an HTTP GET request to the specified link and waits for a standardized JSON object with the
HTTP status code 200 from the responding app.

Request

GET https://host/myapp/ HTTP/1.1
Accept: application/hal+json

Response

HTTP/1.1 200 OK
Content-Type: application/hal+json

{
 "_links" : {
 "sources" : {
 "href" : "/myapp/sources"
 }
 }
}

Note
The root resources are queried anonymously (without authentication) and this process is
executed as an asynchronous background process within DMSApp.

Providing sources

Once the URLs of the sources (sources) have been determined, DMSApp opens the sources of the apps
using HTTP GET.

The example shows how to arrange the HTTP response of the sources link relation in order to identify
sources for DMSApp.

Request

GET https://host/myapp/sources HTTP/1.1
Accept: application/hal+json

Response

HTTP/1.1 200 OK
Content-Type: application/hal+json

{
 "sources" : [{
 "id" : "/myapp/sources/mysource",
 "displayName" : "My Source",
 "categories": [{
 "key": "mycategory1_ID",
 "displayName": "My category 1"

DMS-App-API

20

 },
 {
 "key": "mycategory2_ID",
 "displayName": "My category 2"
 }],
 "properties" : [{
 "key" : "myprop1_ID",
 "displayName" : "My property 1"
 },
 {
 "key" : "myprop2_ID",
 "displayName" : "My property 2"
 },
 {
 "key" : "myprop3_ID",
 "displayName" : "My property 3"
 }]
 }]
}

Structure of a source

Property Property of a
contained

object

Description

sources - The source system can deliver multiple sources in this array (e.g. e-mail, attachments, etc.) in order
to distinguish between different mapping types.

id Indicates the unique identifier of the source.

The ID must be a relative URI. The relative URI should start with the name of the app that provides
the source system in order to ensure uniqueness (e.g. /myapp/sources/mysource).

displayName Indicates the display name as displayed in the Source field in the Mappings administrator interface.

For internationalization purposes, DMSApp works with the HTTP header Accept-Language. This
HTTP header must be evaluated by the source system, and the display name for the source must
be displayed in the corresponding language.

categories Indicates the array of the categories for the source that are provided for managing and processing
mapping.

properties Indicates the array of the properties for the source that are provided for managing and processing
mapping.

Structure of a source category

Property Description

key Indicates the unique identifier of the source category.

display-
Name

Indicates the display name as displayed in the Source field in the Categories area on the Mappings administration
user interface.

For internationalization purposes, DMSApp works with the HTTP header Accept-Language. This HTTP header
must be evaluated by the source system, and the display name for the category must be displayed in the corre-
sponding language.

Structure of a source property

Property Description

key Indicates the unique identifier of the source property.

DMS-App-API

21

Property Description

display-
Name

Indicates the display name as displayed in the Source field in the Source area on the Mappings administration user
interface.

For internationalization, DMSApp works with the HTTP header Accept-Language. This HTTP header must be
evaluated by the source system, and the display name for the property must be displayed in the corresponding
language.

Note
Make sure that: The sources must be returned quickly in order to ensure that the re-
sponse time of the Mappings feature is not negatively affected.

Retrieving the default source system for a d.3 repository
Released: JSON representation

The default source system is a predefined source system for each d.3 repository which is provided by
default by the DMS app. When you provide an extension to DMS functions and do not want to define
your own source system, you can use the properties and categories of the d.3 repository with the default
source system.

The definition of a default source system and the associated mappings are set by the DMS app. You
cannot change mappings for a default source system.

This chapter explains how to retrieve the source system definition for each d.3 repository.

To retrieve the source system definition of a d.3 repository, you must perform the following steps:

• Determining the URL for a repository
• Determine the link relation for retrieving the source system definition of a d.3 repository
• Open the URL for the source system definition of a d.3 repository

Determining the URL for a repository

In the chapter Determining a repository, you can learn how to determine the URL for a repository.

Determine the link relation for retrieving the source system definition of a d.3 repository

The JSON object for a d.3 repository contains the link relation source which you can use to retrieve the
source system definition of the d.3 repository.

Response

{
 "_links": {
 "source": {
 "href": "/dms/r/dee1f3d3-
eae8-5d9d-84d8-2d758c5ddc27/source"
 }
 },
 "id": "dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27"
}

Open the URL for the source system definition of a d.3 repository

You need to ensure that you can authenticate yourself for the d.3 repository. Only then you can
retrieve the URL. The default source system contains all categories and properties of the d.3 repository
regardless of the permissions of the user.

DMS-App-API

22

Retrieve the source system definition of the d.3 repository with the previously determined URL as
follows:

Request

GET https://host/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/source HTTP/1.1
Accept: application/hal+json

Response

HTTP/1.1 200 OK
Content-Type: application/hal+json

{
 "id": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/source",
 "displayName": "D3RepositoryName",
 "properties": [
 {
 "key": "Key0",
 "type": "String",
 "displayName": "Sample property1"
 }
],
 "categories":[
 {
 "key": "mycategory1_ID",
 "displayName": "Sample category1"
 }
]
}

Structure of a source

Property Description

id Specifies the unique identifier of the default source system. You use this ID as a value for the parameter sourceId
for more API functions.

displayName Specifies the display name of a d.3 repository.

categories Specifies the array of categories of the queried source system.

properties Specifies the array of properties of the queried source system.

Structure of a category

Property Description

key Specifies the unique identifier of the category in the source system.

displayName Specifies the display name of the category.

For internationalization purposes, DMSApp works with the HTTP header Accept-Language. This HTTP header
ensures that the display name of the category is displayed in the corresponding language.

Structure of a property

Property Description

key Specifies the unique identifier of the property in the source system.

type Specifies the type of the property.

The type of the property is defined by the administrator when creating the property. Possible values are: String,
ColorCode, Date, DateTime, Double, Money.

DMS-App-API

23

Property Description

display-
Name

Specifies the display name of the property.

For internationalization, DMSApp works with the HTTP header Accept-Language. This HTTP header ensures that
the display name of the property is displayed in the corresponding language.

Retrieving and viewing the results of a search operation
Released: JSON representation, HTML page

When retrieving and viewing the results of a search operation, you can restrict the number of results
displayed to you by specifying a particular source plus the associated source categories and source
properties. You can also restrict your search results using a full-text search term. The Defining a source
system chapter explains how to create a source for mapping.

To retrieve or display only the results of a search operation, you must perform the following steps:

• Determining the URL for a repository
• Determine the link relation for retrieving the results of a search operation
• Specifying response control parameters
• Open the URL for the results of a search operation

Determining the URL for a repository

In the chapter Determining a repository, you can learn how to determine the URL for a repository.

Determining the link relation for retrieving or viewing the results of a search operation

You open the URL for a repository as follows:

Request

GET /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27
Accept: application/hal+json

The JSON object for the repository contains the searchresultwithmapping link relation with placeholders
for the values used to retrieve or view the results of the search operation.

Response

{
 _links: {
 searchresultwithmapping: {
 href: "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/
srm{?
sourceid,sourceproperties,sourcecategories,sourcepropertysort,ascending,full
text,page,pagesize}",
 templated: true
 }
 },
 id: "dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27"
}

Specifying response control parameters

Use the following parameters to control the system response when retrieving or viewing the results of a
search operation: You must encode the URL parameters (e.g. spaces in %20). The length of the encoded
query parameter is limited to 2000 characters.

DMS-App-API

24

Parame-
ter

Description

sourceid Defines the source to which the mapping used to retrieve the results of the search operation belongs. Only the
source properties and categories that have been mapped to d.3 properties and d.3 categories are used for the
individual items in the result. If no source is specified, only the IDs and the link relations for the DMS object will be
returned for the individual items in the result.

source-
proper-
ties

Specifies the search restriction based on the properties of documents and dossiers from the perspective of the
source. Species the ID of the mapped source properties in order to restrict a search procedure to certain criteria. The
search procedure is executed based on the mapping.

Regular expressions specified by the administrator during mapping are ignored.

You must specify the search restrictions as a JSON object. You can define at least one value for each property.

Examples (not encoded):

• sourceproperties={"myprop1_ID":["Test e-mail 1"]}: for a search for items with the d.3 property with the value
"Test e-mail 1" that has been mapped to the source property with the ID "myprop1_ID".

• sourceproperties={"myprop1_ID":["Test e-mail 1", "Test e-mail 2"]}: for a search for items with the d.3 property
with the value "Test e-mail 1" or "Test e-mail 2" that has been mapped to the source property with the ID
"myprop1_ID".

Restriction in relation to the definition of a search operation: You can also define multiple values for a parameter,
provided that facets have been configured for the corresponding d.3 property. If no facets for viewing have been
configured for the d.3 property, the last value is always adopted for the search operation.

You cannot use source properties, which are mapped to the common properties for comment fields (Comment 1 - 4),
for the Search feature, since searching for individual comment fields in the d.3 repository is not supported.

You can also use several properties as search restrictions simultaneously.

Examples (not encoded):

• sourceproperties={"myprop1_ID":["Test e-mail 1"],"myprop2_ID":["John Doe"]}: for a search for items with the d.3
property with the value "Test e-mail 1", that has been mapped to the source property with the ID "myprop1_ID"
and the d.3 property with the value "John Doe" what has been mapped to the source property with the ID
"myprop2_ID".

sourceca-
tegories

Sets the categories used for searching items. You can define at least one category. Enter the ID of the source
category, otherwise the search will be performed across all the categories in a d.3 repository.

Sets the source categories used for searching items. Enter the ID of the source category. The search procedure is
executed based on the mapping.

You must specify the search restrictions as a JSON array. You can specify one or more source categories. If you do
not specify a source category, the search will be performed across all the categories in a d.3 repository.

Examples (not encoded):

• sourcecategories=["mycategory1_ID"]: for a search in the d.3 category that has been mapped to the source
category with the ID "mycategory1_ID".

• sourcecategories=["mycategory1_ID","mycategory2_ID"]: for a search in the d.3 categories that have been mapped
to the source category with the ID "mycategory1_ID" or "mycategory2_ID".

source-
property-
sort

Specifies the ID of the mapped source property that is used to sort the result. If no sort property is specified, the
default sort order using the Last modified sort criteria is applied.

ascending Specifies the direction of the sort order.

• ascending=true: results in an ascending sort order (from small to large (A-Z) and from old to young).
• ascending=false: results in an descending sort order (from large to small (Z-A) and from young to old).

If the ascending parameter is not explicitly specified, the ascending sort order is applied. This is not true for the
default sort order: If the Last modified criteria is used for sorting and the sort order is not specified, the sort order
will be descending.

In addition to this, dossiers are displayed prior to documents in the result list. Within documents and dossiers, the
items are sorted by the specified sorting criterion.

fulltext Specifies a full-text keyword.

page Specifies which page of the result list is requested.

If this parameter is not transferred, Page 1 will be requested.

DMS-App-API

25

Parame-
ter

Description

pagesize Specifies how many items are displayed per page.

If this parameter is not transferred, 25 items per page will be requested.

Note
Specific values for the sourceproperties parameter related to the various options for
restricting the result in a targeted way:

1. Search for a numeric value or a money value:
Specify the value without using a thousand separator. The decimal separator is the
period (.). Example: For the value 1,000.20 EUR specify 1000.20.

2. Search for a date and time:
Specify the date in the format YYYY-MM-DD. Example: Enter 2014-12-05 for the
date 12/05/2014 (MM/DD/YYYY).
Time is specified in the format YYYY-MM-DDTHH:mm:ss+01:00. You must encode
the plus character (+) with %2b. Example: 2015-02-18T23:59:59%2b01:00 for
02/18/2015 at 11:59 p.m. and 59 seconds in the time zone UTC+1 for standard
time in Germany.

3. Search for items that are located in a specific range:
To search in a range, use a combination of the pipe and minus character (|-) as
separators. Examples for a numeric field with the ID "231":

• Values greater than or equal to 100: {"231":["100|-"]}
• Values smaller than or equal to 100: {"231":["|-100"]}
• Values between 100 and 200: {"231":["100|-200"]}

Opening the URL for the results of a search operation (JSON representation)

Once you have created a URL, you can then open the results of the search operation as follows:

Request

GET /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/srm?sourceid=/myapp/sources/
mysource&sourceproperties={"myprop1_ID":["Test E-Mail
1"]}&sourcecategories=["mycategory1_ID"]&sourcepropertysort=myprop1_ID&ascen
ding=true&fulltext=test&page=1&pagesize=50
Accept: application/json

The following JSON object will then be returned as a result:

Response

{
 "_links": {
 "next": {
 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/srm?...page=2"
 },
 "self": {
 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/srm?...page=1"
 }
 },
 "page": 1,
 "items": [
 {
 "_links": {

DMS-App-API

26

 "self": { "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/
D000000123" },
 "previewReadonly": { href": "/dms/r/dee1f3d3-
eae8-5d9d-84d8-2d758c5ddc27/o2/D000000123/preview?isReadonly=true" }
 },
 "id": "D000000123",
 "sourceProperties": [
 {
 "key": "myprop1_ID",
 "value": "Test E-Mail 1",
 "isMultiValue": false
 },
 {
 "key": "myprop2_ID",
 "value": "Max Mustermann",
 "isMultiValue": true
 },
 "..."
],
 "sourceCategories": ["mycategory1_ID"]
 },
 "..."
]
}

Property Description

_links Contains the link relations for the item.

self: Self-link.

previewReadonly: Relative URL for retrieving the preview in read mode. Use the link relation when the preview is
displayed in the inner supply (InnerSupply) of the operating concept.

next: Relative URL for opening the next page of the result list. Is only specified when there are more results to display.

prev: Relative URL for opening the previous page of the result list. Is only specified when there are previous results to
display.

page Specifies the page number of the result list.

items Specifies the array with search operation result items for the requested page.

Structure of an item in the result list

Property Description

_links Contains the link relations for the item.

self: Self-link.

delete or deleteWithReason: If available, the item can be deleted with an HTTP DELETE request. For more
information see Deleting the current version of a DMS object without user interaction.

update or updateWithContent: If available, the item can be updated with an HTTP PUT request. For more informa-
tion see Storing a new version without user interaction.

id Specifies the document ID of the item.

sourcePro-
perties

Specifies the array with source properties that are available for the item.

If the same source property has been mapped to multiple d.3 properties that the item possesses, this source
property will be returned multiple times with the respective values of the d.3 property.

Regular expressions specified by the administrator during mapping are ignored.

sourceCa-
tegories

Specifies the array with the IDs of the source categories that are available for the item.

The system will only return multiple categories if multiple source categories have been mapped to the d.3 category
in which the item is located.

DMS-App-API

27

Structure of a source property

Property Description

key Indicates the unique identifier of the source property.

value Specifies the value of the mapped d.3 property.

displayValue Specifies the display value for the mapped d.3 property. Is returned only if the value (value) and display value
(displayValue) are different.

isMultiValue Specifies whether the mapped d.3 property is a multi-value property.

If the d.3 property is a multi-value property, value will return the first value or first input value of the property
(depending on the d.3 repository configuration). To retrieve all multi-values, use the request for Retrieving the
details of a DMS object.

Opening the URL for the results of a search operation (HTML page)

If you want to open the HTML view of the results, you must create the URL in the same way as
described for retrieving the JSON representation. Enter the URL in the browser to view the HTML page.
This HTML page contains the identifiers for the d.3 properties and d.3 categories.

Examples (not encoded):

Request

GET /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/srm?sourceid=/myapp/sources/
mysource&sourceproperties={"myprop1_ID":["Test E-Mail
1"]}&sourcecategories=["mycategory1_ID"]&sourcepropertysort=myprop1_ID&ascen
ding=true&fulltext=test&page=1&pagesize=50
Accept: text/html

Retrieving and viewing the details of a DMS object
Released: JSON representation, HTML page

You can retrieve the details of a DMS object as a JSON representation or view the detail view for a
DMS object. When retrieving the details as a JSON representation, you can enter a specific source from
a source system to define which source properties and source categories are determined. If you do not
specify a source, only the ID and the link relation for the DMS object will be returned. The Defining a
source system chapter explains how to create a source.

To retrieve or display the details of a DMS object, you must perform the following steps:

• Determining the URL for a repository
• Determine the link relation for retrieving the details of a DMS object
• Specifying response control parameters
• Open the URL for the details of a DMS object

Determining the URL for a repository

In the chapter Determining a repository, you can learn how to determine the URL for a repository.

Determining the link relation for retrieving or viewing the details of a DMS object

You open the URL for a repository as follows:

Request

GET /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27
Accept: application/hal+json

The JSON object for the repository contains the dmsobjectwithmapping link relation with placeholders
for the values used to retrieve or view the details of the DMS object.

DMS-App-API

28

Response

{
 _links: {
 dmsobjectwithmapping: {
 href: "/dms/r/dee1f3d3-
eae8-5d9d-84d8-2d758c5ddc27/o2m/{dmsobjectid}{?sourceid}",
 templated: true
 }
 },
 id: "dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27"
}

Specifying response control parameters

Use the following parameters to control the system response when retrieving or viewing the details of a
DMS object:

Parameter Description

dmsobjec-
tid

Specifies the document ID of the DMS object for which you want to request or view the details.

sourceid Defines the source to which the mapping used to retrieve the details of the DMS object belongs.

For information about providing a source system for mapping, see Defining a source system.

If you want to use the default source system, see Retrieving the default source system for a d.3 repository for more
information.

Retrieve (JSON representation):

Only the source properties that are mapped to the d.3 properties are returned. If no source is specified, only the ID
and the link relation for the DMS object will be returned.

View (HTML page):

You do not need to enter this parameter if you wish to view the details of a DMS object. The parameter will not be
evaluated.

Opening the URL for the details of a DMS object (JSON representation)

Once you have created a URL, you can then retrieve the details of the DMS object as follows:

Request

GET /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/D000000123?sourceid=/
myapp/sources/mysource
Accept: application/json

The following JSON object will then be returned as a result:

Response

{
 "_links": {
 "self": {
 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/
D000000123"
 },
 "mainblobcontent": {
 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2/
D000000123/v/current/b/main/c"
 },

DMS-App-API

29

 "editinoffice": {
 "href": "{ms-
word:ofe|u|{+clientOrigin}/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2/
D000000123/dav/D000000123%20(D000000123).DOCX}",
 "templated": true
 },
 "pdfblobcontent": {
 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2/D000000123/v/
current/b/p1/c"
 },
 "notes":{
 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/
D000000123/n"
 },
 "children":{
 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/srm/?
children_of=D000000123"
 },
 "versions":{
 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/
D000000123/v/"
 }
 },
 "id": "D000000123",
 "sourceProperties": [
 {
 "key": "myprop1_ID",
 "value": "value of property 1"
 },
 {
 "key": "myprop2_ID",
 "value": "value of property 2 in row 2",
 "values": {
 "2": "value of property 2 in row 2",
 "4": "value of property 2 in row 4"
 }
 }
],
 "sourceCategories": ["mycategory2_ID"]
}

Property Description

_links Contains the link relations for the DMS object.

mainblobcontent: Relative download URL for the main document of the current version of the DMS object.

editinoffice: URL with placeholders for editing the document in Microsoft Office. You will only receive this URL if the
administrator has activated the function for editing Microsoft Office documents. The URL is unavailable if you are
working with Microsoft Office 365 in the cloud.

pdfblobcontent: Relative download URL for the generated (“dependent”) PDF document of the current version of the
DMS object. You receive this URL only if a generated PDF document has been created for the DMS object.

notes: Relative URL for opening the notes of the DMS object. You will only receive this URL if any notes have already
been saved for the DMS object.

children: Relative URL for the child DMS objects. You will only receive this URL if the DMS object has child items.

versions: Relative URL for retrieving and displaying the versions of a DMS object.

self: Self-link.

DMS-App-API

30

Property Description

id Specifies the document ID of the DMS object.

source-
Proper-
ties

Specifies the array with source properties that are available for the requested DMS object.

If the same source property has been mapped to multiple d.3 properties that the requested DMS object possesses,
this source property will be returned multiple times with the respective values of the d.3 property.

sourceCa-
tegories

Specifies the array with the IDs of the source categories that are possible for the requested DMS object.

The system will only return multiple categories if multiple source categories have been mapped to the d.3 category in
which the requested DMS object is located.

Structure of a source property

Property Description

key Indicates the unique identifier of the source property.

value Specifies the value of the mapped d.3 property.

If the d.3 property is a multi-value property, value will return the first value or first input value of the property
(depending on the d.3 repository configuration).

values Specifies the values of the mapped d.3 property. Only returned if the d.3 property is a multi-value property.

values is an object comprised of name-value pairs (key value):

Name: Row number (starting with 1).

Value: Value of the property in the corresponding row.

displayVal-
ue

Specifies the display value for the mapped d.3 property. Is returned only if the value (value) and display value
(displayValue) are different.

Opening the URL for the details of a DMS object (HTML page)

If you want to open the HTML view of the results, you must create the URL in the same way as
described for querying the JSON representation. Enter the URL in the browser to view the HTML page.
This HTML page contains the identifiers for the d.3 properties and d.3 categories.

Example:

Request

GET /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/D000000123
Accept: text/html

Storage of DMS objects
When storing DMS objects, you can determine the storage metadata by specifying a particular source
plus the associated source categories and source properties. The Defining a source system chapter
explains how to create a source for mapping. In the Basic information about mapping chapter, you can
find general information for helping you to create mappings.

In this topic, you will learn how to store data from a source using the DMSApp.

• Storing a new DMS object without user interaction
• Updating a DMS object without user interaction
• Storing new DMS objects with user interaction
• Updating DMS objects with user interaction
• Changing the current editor and document status

Please note the following limitations (only applies to the d.velop documents cloud offer):

• max. 3000 updates of DMS objects per client (client IP) in a period of 5 minutes
• max. 8000 saves of new DMS objects per client (client IP) in a period of 5 minutes

DMS-App-API

31

Storing a new DMS object without user interaction
You can store a new DMS object automatically in the d.3 repository without the need for action by the
user. No Validate hooks are executed in d.3 server during storing without user interaction. Mappings are
required before the action can be performed. In the Basic information about mapping chapter, you can
find general information for helping you to create mapping.

Perform the following steps to store a DMS object:

• Determining the URL for a repository
• Determine the link relation for storing a new DMS object
• Provide the file to be stored (optional)
• Open the URL for storing a new DMS object

Determining the URL for a repository

In the chapter Determining a repository, you can learn how to determine the URL for a repository.

Determining the link relation for storing a new DMS object

You open the URL for a repository as follows:

Request

GET /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27
Accept: application/hal+json

The JSON object for a repository contains the link relation dmsobjectwithmapping.

Response

{
 "_links": {
 "dmsobjectwithmapping": {
 "href": "/dms/r/dee1f3d3-
eae8-5d9d-84d8-2d758c5ddc27/o2m/{dmsobjectid}{?sourceid}",
 "templated":true
 }
 },
 "id": "dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27"
}

The values dmsobjectid and sourceid are not relevant for storage. They do not need to be filled when
executing the template.

Provide the file to be stored (optional)

The Provision of files chapter explains how to obtain the contentUri or contentLocationUri. These
parameters are required for storing a new DMS object.

If you want to create a dossier, you do not need to provide the file.

Open the URL for storing a new DMS object

Perform an HTTP POST request to this URL with the required properties as Body.

Request

POST /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m
Origin: https://baseuri

DMS-App-API

32

Accept: application/hal+json
Content-Type: application/hal+json

{
 "filename": "myfile.txt",
 "sourceCategory": "mycategory1_ID",
 "sourceId": "/myapp/sources/mysource",
 "contentLocationUri": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/
blob/chunk/2018-01-01_temp_master_file_user1_44f7-95a6-58b8400ecf43",
 "sourceProperties": {
 "properties": [{
 "key": "myprop1_ID",
 "values": ["Please verify the XYZ invoice"]
 },
 {
 "key": "myprop2_ID",
 "values":
["Name1@contoso.com","Name2@samplecompany.de"]
 }
],
 }
}

For information about the JSON object parameters, see the chapter Defining the parameters for storing.

If no assignment is configured for the d.3 document status, the document status Release (Release) is
used by default for the DMS object. The Status property must be assigned by the administrator if you
want to use a different document status during storage.

If the call is successful, the URL is returned to the DMS object in the Location header:

If linking an item to a dossier (parentId) fails, you will receive the URL to the DMS object in the Location
header, as well as an additional notification that the linking process has failed.

Response

HTTP/1.1 201 Created
Location: /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/D0001234?
sourceId=%2Fmyapp%2Fsources%2Fmysourc

{
 "reason": "You do not have the right to link the document with the
dossier manually.
Nevertheless, the document was successfully saved. The document may be
automatically linked on the server."
 "severity": 1
}

If the call was successful and there is detailed information on the processing result of the storage
operation, the detailed information is returned in the response. With the help of the information, you
can decide whether further processing steps are necessary for the DMS object. For more information see
Format of the response for successful requests with detailed information.

If storing the DMS object fails, an appropriate answer is displayed. For more information see Response
format for errors.

DMS-App-API

33

Updating a DMS object without user interaction
You can update an existing DMS object in a d.3 repository without the need for action by the user.
No Validate hooks are executed in d.3 server while updating the DMS object without user interaction.
Mappings are required before the action can be performed. In the Basic information about mapping
chapter, you can find general information for helping you to create mapping.

To update a DMS object, perform the following steps:

• Determining the URL for a repository
• Determine the link relation for the existing DMS object
• Provide the file to be stored (optional)
• Open the URL to update the DMS object

Determining the URL for a repository

In the chapter Determining a repository, you can learn how to determine the URL for a repository.

Determine the link relation for the existing DMS object

To determine a URL for an existing DMS object, perform a search and evaluate the update or update-
WithContent link relation for an item in the result list. The chapter Retrieving and viewing the results of
a search operation provides you with more information about performing a search and the description of
a result list item. If the d.3 document status of the existing DMS object is Processing, the authenticated
user must be the processor of the DMS object.

Provide the file to be stored (optional)

If you have determined an updateWithContent link relation, you can provide a file with the parameters
contentUri or contentLocationUri. In the chapter Provision of files, you can learn how to provide a file.

If you want to update only the properties with the update link relation, you do not need to provide a file.

If you have received only an update link relation, an update with a file is not possible.

Open the URL to update the DMS object

Send an HTTP PUT request with the required properties as the Body to the URL of the existing DMS
object that you received in the update or updateWithContent link relation. If you want to modify only
parameters, do not specify the contentLocationUri and filename parameters.

Request

PUT /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/A00000001
Origin: https://baseuri
Accept: application/hal+json
Content-Type: application/hal+json

{
 "filename": "myfile.txt",
 "alterationText": "updated file",
 "sourceCategory": "mycategory1_ID",
 "sourceId": "/myapp/sources/mysource",
 "contentLocationUri": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/
blob/chunk/2018-01-01_temp_master_file_user1_44f7-95a6-58b8400ecf43",
 "sourceProperties": {
 "properties": [{
 "key": "myprop1_ID",
 "values": ["Please verify the XYZ invoice"]

DMS-App-API

34

 },
 {
 "key": "myprop2_ID",
 "values":
["Name1@contoso.com","Name2@samplecompany.de"]
 }
]
 }
}

For information about the JSON object parameters, see the chapter Defining the parameters for storing.

You cannot transfer the status of the document using the URL described above. Use the URL of the
current version of the document to transfer status. For more information, see Change the current editor
and document status.

If the call is successful, HTTP 200 OK is returned:

Response

HTTP/1.1 200 OK

If the call was successful and there is detailed information on the processing result of the storage
operation, the detailed information is returned in the response. With the help of the information, you
can decide whether further processing steps are necessary for the DMS object. For more information see
Format of the response for successful requests with detailed information.

If the version fails to save, a corresponding answer (response) is returned. For more information see
Response format for errors.

If the call was successful and there is detailed information about the processing result of the storage op-
eration, this detailed information is returned in the response. You can use this information, for example,
to make decisions about whether further processing steps are necessary for the DMS object. For more
information see Format of the response for successful requests with detailed information.

Storing new DMS objects with user interaction
Released: HTML page

You can open the Storage feature to store new DMS objects with properties and files. Mappings are
required before the action can be performed. In the Basic information about mapping chapter, you can
find general information for helping you to create mappings.

Perform the following steps to store DMS objects:

• Determine the link relation for the storage dialog
• Provide the file to be stored (optional)
• Create a storage dialog with predefined properties and files
• Display the storage dialog with predefined properties and files
• Perform more actions after storing (optional)

Determine the link relation for the storage dialog

There are two link relations for the Storage feature:

• Link relation without reference to a d.3 repository: Storage without reference to a d.3 repository
allows the user to select the d.3 repository. In this case, however, you cannot temporarily upload the
file. For more information about providing files see Provision of files.

• Link relation with reference to a d.3 repository: When storing with reference to a d.3 repository, the
user is no longer able to change the d.3 repository.

DMS-App-API

35

To determine the link relation to a d.3 repository, execute an HTTP GET request for the REST resource /
dms.

Request

GET /dms
Accept: application/hal+json

The JSON object contains the link relation new.

Response

{
 "_links": {
 "new": {
 "href": "/dms/new/"
 }
 }
}

You must know the repository URL in order to determine the link relation with reference to a d.3
repository. In the chapter Determining a repository, you can learn how to determine the URL for a
repository. Then execute an HTTP Get request on the URL for a repository as follows:

Request

GET /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27
Accept: application/hal+json

The JSON object for a repository contains the link relation new.

Response

{
 "_links": {
 "new": {
 "href": "/dms/r/dee1f3d3-
eae8-5d9d-84d8-2d758c5ddc27/new/"
 }
 },
 "id": "dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27"
}

Provide the file to be stored (optional)

The Provision of files chapter explains how to obtain the contentUri or contentLocationUri. This parame-
ter is required to create a storage dialog for a new DMS object.

If you want to create a dossier, you do not need to provide the file.

Create a storage dialog with predefined properties and files

Send an HTTP POST request with the required properties as the Body to the URL that you received in
the self link relation.

Request

POST /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/new
Origin: https://baseuri

DMS-App-API

36

Accept: application/hal+json
Content-Type: application/hal+json

{
 "storeObjects": [{
 "displayValue": "Please verify the XYZ invoice",
 "filename": "myfile.txt",
 "contentLocationUri": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/
blob/chunk/2018-01-01_temp_master_file_user1_44f7-95a6-58b8400ecf43",
 "sourceId": "/myapp/sources/mysourcel",
 "sourceCategory": "mycategory1",
 "sourcePropertiesUri": "/myapp/sources/mysourcel/properties/
myfile.haljson",
 "successCallbackUri": "/myapp/sources/mysourcel/success/
myfile"
 },
 {
 ...
 }]
}

The JSON object that is transferred to POST is described as follows:

Property Description

storeObjects Specifies the array of item properties and files that should be used to define the storage dialog. For information
about an item of the array, see Defining the parameters for storing.

To store a single DMS object, you can also specify the JSON object of the item properties without the
storeObjects parent array.

If the call is successful, the URL is returned to the storage dialog in the Location header:

Response

HTTP/1.1 201 Created
Location: /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/new/
a09dd457-5a21-4b90-8134-e562092b50ea

If creating the storage dialog fails, an appropriate response is displayed. For more information see
Response format for errors.

Displaying the storage dialog with predefined properties and files

Open the URL that you received in the Location header in the browser to show the created storage
dialog to the user. The user can edit the properties and complete the storage of the DMS objects.

Perform more actions after storing (optional)

The URL is opened if the successCallbackUri parameter is specified while creating the storage dialog
and the user has successfully completed the storage process. You can perform additional steps after
performing this action. For more information, see Feedback using "SuccessCallback" and "Userdata".

Updating DMS objects with user interaction
Released: HTML page

You can select the Storage feature to update the properties and file of a DMS object. Mappings are
required before the action can be performed. In the Basic information about mapping chapter, you can
find general information for helping you to create mappings.

DMS-App-API

37

To update a DMS object, perform the following steps:

• Determine the ID for the existing DMS object
• Provide the file to be stored (optional)
• Determine the link relation for the storage dialog
• Create a storage dialog with predefined properties and files
• Displaying the storage dialog with predefined properties and files
• Perform more actions after storing (optional)

Determine the ID for the existing DMS object

In the chapter Searching for DMS objects, you can learn how to determine the ID for an existing DMS
object. If the d.3 document status of the existing DMS object is Processing, the authenticated user must
be the processor of the DMS object.

Provide the file to be stored (optional)

In the chapter Provision of files, you can learn how to provide a file.

Determine the link relation for the storage dialog

In the chapter Determining a repository, you can learn how to determine the URL for a repository. Then,
execute an HTTP Get request on the URL for a repository as follows:

Request

GET /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27
Accept: application/hal+json

The JSON object for a repository contains the link relation new.

Response

{
 "_links": {
 "new": {
 "href": "/dms/r/dee1f3d3-
eae8-5d9d-84d8-2d758c5ddc27/new/"
 }
 },
 "id": "dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27"
}

Create a storage dialog with predefined properties and files

Send an HTTP POST request with the required properties as the Body to the URL that you received in
the self link relation.

Request

POST /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/new
Origin: https://baseuri
Accept: application/hal+json
Content-Type: application/hal+json

{
 "storeObjects": [{
 "dmsObjectId": "D123456789",
 "displayValue": "Please verify the XYZ invoice",

DMS-App-API

38

 "filename": "myfile.txt",
 "contentLocationUri": "/dms/blob/chunk/2016-
May-24-14-20-26-393-1720.part",
 "sourceId": "/myapp/sources/mysourcel",
 "sourcePropertiesUri": "/myapp/sources/mysourcel/properties/
myfile.haljson",
 "successCallbackUri": "/myapp/sources/mysourcel/success/myfile"
 },
 {
 ...
 }]
}

The JSON object that is transferred to POST is described as follows:

Property Description

storeObjects Specifies the array of item properties and files that should be used to define the storage dialog. For information
about an item of the array, see Defining the parameters for storing.

To update a single DMS object, you can also specify the JSON object of the item properties without the
storeObjects parent array.

If the call is successful, the URL is returned to the storage dialog in the Location header:

Response

HTTP/1.1 201 Created
Location: /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/new/
a09dd457-5a21-4b90-8134-e562092b50ea

If creating the storage dialog fails, an appropriate response is displayed. For more information see
Response format for errors.

Displaying the storage dialog with predefined properties and files

Open the storage dialog URL that you received in the Location header in the browser to display the
storage dialog to the user. The user can edit the properties and finish updating the DMS objects.

Perform more actions after storing (optional)

The URL is opened if the successCallbackUri parameter is specified while creating the storage dialog
and the user has successfully completed the storage process. You can perform additional steps after
performing this action. For more information, see Feedback using "SuccessCallback" and "Userdata".

Changing the current editor and document status
You can update the editor and document status of an existing DMS object in a d.3 repository without
the need for action by the user. Mappings are required before the action can be performed. In the Basic
information about mapping chapter, you can find general information for helping you to create mappings.

To change the editor or document status of a DMS object, you must perform the following steps:

• Determining the URL for a repository
• Determine the link relation for the existing DMS object
• Open the URL for changing the editor or document status of a DMS object

Determining the URL for a repository

In the chapter Determining a repository, you can learn how to determine the URL for a repository.

DMS-App-API

39

Determine the link relation for the existing DMS object

To determine a URL for an existing DMS object, perform a search and evaluate the displayVersion link
relation for an item in the result list. The chapter Retrieving and viewing the results of a search operation
provides you with more information about performing a search and the description of a result list item.

Opening the URL for changing the DMS object status and editor

Send an HTTP PUT request with the required properties as the Body to the URL of the current available
version of the DMS object that you received in the displayVersion link relation.

You can find descriptions of the JSON object transferred with the PUT request below:

Property Description

property_state Target state of the document. Possible values:

• Processing
• Verification
• Release
• Archive

property_edi-
tor

Mandatory field for the target status Processing and optional for the target status Verification. The parameter
is ignored in other target statuses. Possible values:

• Target status Processing: User or group ID to which the document is to be assigned.
• Target status Verification: Group ID to which the document is to be assigned.

You can use the IDs from both d.ecs identity provider and the DMS system.

alterationText Mandatory field for the target status Release.

Text (max. 120 bytes) that is stored when the status changes for the document version. You can provide
information about the extent of the change, for example.

Example 1: Changing a document status to “Processing” or changing the editor with your own mapping

Ensure that mapping exists in which the value myprop1_ID is set to property_state and myprop2_ID is
set to property_editor.

Request

PUT/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/A00000001/v/current
Origin: https://baseuri
Accept: application/hal+json
Content-Type: application/hal+json

{
 "sourceId": "/myapp/sources/mysource",
 "sourceProperties": {
 "properties": [
 {
 "key": "myprop1_ID",
 "values": [
 "Processing"
]
 },
 {
 "key": "myprop2_ID",
 "values": [
 "97273358-d124-497c-97ce-977f72b32a33"
]
 }

DMS-App-API

40

]
 }
}

If the call is successful, HTTP 200 OK is returned:

Response

HTTP/1.1 200 OK

Example 2: Changing a document status to “Processing” or changing the editor with standard mapping

Request

PUT/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/A00000001/v/current
Origin: https://baseuri
Accept: application/hal+json
Content-Type: application/hal+json

{
 "sourceId": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/source",
 "sourceProperties": {
 "properties": [
 {
 "key": "property_state",
 "values": [
 "Processing"
]
 },
 {
 "key": " property_editor",
 "values": [
 "97273358-d124-497c-97ce-977f72b32a33"
]
 }
]
 }
}

If the call is successful, HTTP 200 OK is returned:

Response

HTTP/1.1 200 OK

Example 3: Changing a document status to “Release” with standard mapping

Request

PUT/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/A00000001/v/current
Origin: https://baseuri
Accept: application/hal+json
Content-Type: application/hal+json

{
 "sourceId": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/source",
 "alterationText": "updated file",
 "sourceProperties": {

DMS-App-API

41

 "properties": [
 {
 "key": "property_state",
 "values": [
 "Release"
]
 }
]
 }
}

If the call is successful, HTTP 200 OK is returned:

Response

HTTP/1.1 200 OK

If the change of editor or document status fails, an appropriate response is returned. For more informa-
tion see Response format for errors.

General information about the storage process
In this topic, you can learn more details about storing DMS objects. However, before you begin with this
topic, you should familiarize yourself with the chapters on saving and updating DMS objects.

• Defining the parameters for storing
• Provision of files
• Response format for errors
• Feedback using "SuccessCallback" and "Userdata"

Defining the parameters for storing
In this chapter, you learn more about the parameters you can use to store DMS objects. The parameters
are applicable for storing with or without user action.

Setting a JSON object for storing

The JSON object that is sent with the HTTP requests for storing a DMS object includes the following
parameters:

Property Description

displayVal-
ue

Specifies the display name of the item that is stored. The display name will become visible to the user in the storage
dialog. This parameter is optional.

filename Specifies the name of the file to be stored with the file extension.

If you set this parameter, you need to map the category which you specified under sourceCategory in the mapping
processing for a document type. If you do not set this property, you need to map the category which you specified
under sourceCategory the in mapping processing for a dossier type.

• The property is mandatory if you are resaving a document.
• This property is optional if you are updating a document. If the parameter is not set, the old file name will be

used.
• The property is ignored if you update a document without contentLocationUri or contentUri .
• The property must not be set when you create or update a new dossier.

dmsObjec-
tId

Specifies the ID of the DMS object to be updated. This parameter is taken into account when updating a DMS
object with user interaction.

alteration-
Text

Specifies the reason for change for the update of a DMS object. In d.3 admin, you define whether the parameter
has to be entered. This parameter is taken into account only when updating a DMS object.

DMS-App-API

42

Property Description

sourceCate-
gory

Specifies which category should be used for mapping processing while storing. Enter the ID of the source category.

This property must be specified except under the following circumstances:

• The property is ignored if the parameter parentId is set and an associated default category has been defined in
d.3 admin.

• The property is ignored when you update a DMS object.
• The property is optional if an item is stored via user action.

If you store multiple DMS objects via user action, then only the source category of the first item in the storeOb-
jects array in the storage dialog is taken into account. This source category is displayed to the user for all additional
files to be stored.

sourceId Defines the source to which the mapping that is to be used for storing belongs. The source must exist and the
source system must be registered with d.ecs http gateway so that the properties under sourcePropertiesUri or
sourceProperties can be applied.

For more information about providing a source see Defining the parameters for storing.

If you do not have your own source system, you can also use the default source system of the d.3 repository. For
information on the standard source system, see Retrieving the default source system for a d.3 repository.

sourcePro-
pertiesUri

Specifies the URL through which the DMSApp should download the item properties for the mapping processing
and duplicate check. Before storing the DMS object, the DMSApp sends an HTTP GET request to the URL in
order to determine the source properties for the storage process. If the sourcePropertiesUri is a relative URL, the
user information of the registered user is also transmitted in the HTTP request (AuthSessionID). This makes it
possible to take the current user name into account or perform a permission check, for example. In the case of
an absolute URL, the source properties are requested anonymously. The JSON object to be provided is described
under "Setting the source properties."

Alternatively, you can use the sourceProperties property.

sourcePro-
perties

Specifies a JSON array with source properties that are used for mapping processing and duplicate check. The JSON
object to be provided is described under "Setting the source properties."

Alternatively, you can use the sourcePropertiesUri property.

contentLo-
cationUri

Specifies the URL for the file that was temporarily uploaded. For more information, see Providing a file via
temporary upload.

Alternatively, you can use the contentUri property.

If you set this parameter, you need to map the category which you specified under sourceCategory the in mapping
processing for a document type. If you do not specify neither the contentLocationUri nor the contentUri property,
you need to map the category which you specified under sourceCategory in the mapping processing for a dossier
type.

This property is optional if you want to update a DMS object or create a dossier.

contentUri Specifies the relative URL through which the DMSApp downloads the file to be stored. For more information, see
Providing a file via temporary upload.

Alternatively, you can use the contentLocationUri property.

If you set this parameter, you need to map the category which you specified under sourceCategory the in mapping
processing for a document type. If you do not specify neither the contentLocationUri nor the contentUri property,
you need to map the category which you specified under sourceCategory in the mapping processing for a dossier
type.

This property is optional if you want to update a DMS object or create a dossier.

parentId Specifies the DMS object ID of the dossier with which the item to be stored should be linked. If the storage process
is successful, the stored item is linked to the corresponding dossier. If the item to be stored is recognized as a
duplicate, the already existing item is linked to the dossier.

However no duplicate check performed, when you want to link a dossier to another dossier.

This property is ignored when you update a DMS object.

successCall-
backUri

Specifies the URL that is opened via HTTP POST when the storage process was performed successfully. The URL
must be relative. For more information, see Feedback using "SuccessCallback" and "Userdata".

This property is optional. You can use the property only when storing with user interaction.

Setting the source properties

DMS-App-API

43

You can define the source properties directly using the sourceProperties parameter or provide them
using the URL in sourcePropertiesUri.

The JSON object is described as follows:

Proper-
ty

Description

proper-
ties

Specifies an array of the source properties that are provided for mapping processing. Only the properties that were
configured by the administrator in the mapping are taken into consideration when storing.

unique-
Tag

Specifies a unique hashcode that is used by the source for the item to be stored and by the d.3 server for duplicate
recognition. Setting this property is optional.

userda-
ta

Specifies an array of options that should also be displayed in the storage dialog. Specifying this property is optional. You
can use the property only when storing with user interaction.

For more information see Feedback using "SuccessCallback" and "Userdata".

DMS-App-API

44

Proper-
ty

Description

check-
Hash

Indicates the hash of the file to be stored. The hash of the file to be stored helps you to validate the file saving process
in a d.3 repository. If the hashes do not match, the document saving process is terminated with an error message.

While saving the file, a hash of the file is generated by the server, compared with the hash that you generate and
validated. In this case, the parameter must have the following structure:

HASHALGORITHM:base64encode(hashfunction(PAYLOAD))

Example of a file with the content "Example":

SHA512:xrCRnH/
mKK6QVpksSpF+XcA1qWFdSX9usr0UBj6q0+ZQjvyGgv7IKCPKPz3jEYaKcpkJRhZkKfAbOPnzPZymEA==

The following hash algorithms are supported:

• RIPEMD256
• SHA256
• SHA384
• SHA512
• MD5

This parameter is optional.

Always perform Base64 encoding at the byte level. Encoding a textual representation results in invalid hash values.

Examples of generating a checkHash value using the classes from System.Security.Cryptography in C#:

private string CreateM5Hash(string filename)
{
 using (var md5 = MD5.Create())
 {
 using (var stream = File.OpenRead(filename))
 {
 var retVal = md5.ComputeHash(stream);
 //Bytes in retVal für eine Datei mit dem Inhalt "Example":
 //45 155 209 108 21 173 26 160 179 111 217 119 62 110 20 172

 return $"MD5:{Convert.ToBase64String(retVal)}";
 //Hash base64-encodiert:
 //MD5:ClJzBZf7T/oB/BF9nnHjqQ==
 }
 }
}

private string CreateSHA256Hash(string filename)
{
 using (var sha256 = SHA256.Create())
 {
 using (var stream = File.OpenRead(filename))
 {
 var retVal = sha256.ComputeHash(stream);
 //Bytes in retVal für eine Datei mit dem Inhalt "Example":
 //53 239 154 101 221 213 246 176 70 65 37 206 150 167 54 152
 //63 65 154 140 96 227 200 169 71 112 149 213 153 156 17 27

 return $"SHA256:{Convert.ToBase64String(retVal)}";
 //Hash base64-encodiert:
 //SHA256:0Cn4fj2A+P2bG+Z8dCa0zB/0e0qdCoRhyCalnYxets0=
 }
 }
}

private string CreateSHA512Hash(string filename)
{
 using (var sha512 = SHA512.Create())
 {
 using (var stream = File.OpenRead(filename))
 {
 var retVal = sha512.ComputeHash(stream);
 //Bytes in retVal für eine Datei mit dem Inhalt "Example":
 //72 237 177 122 242 252 39 57 63 98 44 167 119 228 162 20 106
 //147 201 76 246 223 209 126 97 224 198 30 40 137 121 216 147
 //21 15 16 1 103 84 101 60 241 95 82 14 126 211 137 170 235

DMS-App-API

45

Proper-
ty

Description

180
 //206 18 112 247 228 229 185 208 62 192 244 131 41

 return $"SHA512:{Convert.ToBase64String(retVal)}";
 //Hash base64-encodiert:
 //SHA512:xrCRnH/
mKK6QVpksSpF+XcA1qWFdSX9usr0UBj6q0+ZQjvyGgv7IKCPKPz3jEYaKcpkJRhZkKfAbOPnzPZymEA==
 }
 }
}

Structure of an object in the "property" array

Prop-
erty

Description

key Specifies the ID of the source property. Only the properties that you specified and that were configured by the
administrator in the mapping are taken into account.

When updating a DMS object, only the properties that you specified are updated. All the other values for the existing
DMS object properties are retained.

When you want to specify the creation date (property_creation_date) of the DMS object, the specification of the
property is only considered when a new DMS object is saved without any user interaction. For more information, see
Storing a new DMS object without user interaction.

values Specifies an array with the corresponding values of the item property. Even if you only want to transmit one value, you
must transmit this value as a JSON array.

You can set the d.3 document status for a DMS object when storing a new DMS object. The values available are
Processing, Verification and Release.

During a DMS object update, mappings for the d.3 document status, d.3 variant number, d.3 document ID and d.3
document number are ignored.

Properties with the tag "read-only" are not considered while storing the item.

During an update without user interaction, the authenticated user must be the processor of the DMS object if the
existing DMS object has the Processing d.3 document status.

Specify the numerical value without using a thousand separator. The decimal separator is the period (.). Example: For the
value 1,000.20 EUR specify 1000.20.

Specify the date values in the format YYYY-MM-DD. Example: Enter 2014-12-05 for the date 12/05/2014 (MM/DD/
YYYY).

Enter date and time values in the format YYYY-MM-DDTHH:mm:ss+01:00. Example: 2015-02-18T23:59:59+01:00 for
2/18/2015 at 11:59 p.m. and 59 seconds in the time zone UTC+1 for standard time in Germany.

Example 1: Providing the file and the properties via a URL

A simple JSON object could appear as follows:

{
 "filename": "myfile.txt",
 "alterationText": "updated file",
 "sourceCategory": "mycategory1_ID",
 "sourceId": "/myapp/sources/mysource",
 "contentUri": "/myapp/sources/mysource/myfile.txt",
 "sourcePropertiesUri": "/myapp/sources/mysource/myfile.haljson"
}

Example 2: The properties, including the "userdata" and "successCallbackUri" parameters, are directly
specified.

The following JSON object contains userdata and the properties (properties). uniqueTag is set at the
same time for the duplicate check.The dossier ID is set in the parentId parameter in order to link the
DMS object to be recreated:

DMS-App-API

46

{
 "displayValue": "Please verify the XYZ invoice",
 "filename": "myfile.txt",
 "alterationText": "updated file",
 "sourceCategory": "mycategory1_ID",
 "sourceId": "/myapp/sources/mysource",
 "parentId": "P123456789",
 "contentLocationUri": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/blob/
chunk/2018-01-01_temp_master_file_user1_44f7-95a6-58b8400ecf43",
 "successCallbackUri": "/myapp/sources/mysource/myfile/success",
 "sourceProperties": {
 "properties": [{
 "key": "myprop1_ID",
 "values": ["Please verify the XYZ invoice"]
 },
 {
 "key": "myprop2_ID",
 "values": ["Name1@contoso.com","Name2@samplecompany.de"]
 }
],
 "userdata": [{
 "key": "postProcessingOption",
 "display": "My post processing options",
 "values": [
 {"value":"1", "display": "Action 1",
"default":"false"},
 {"value":"2", "display": "Default action 2",
"default":"true"},
 {"value":"3", "display": "Action 3",
"default":"false"}
]
 }
],
 "uniqueTag": "123456789",
 "checkHash": "MD5:ClJzBZf7T/oB/BF9nnHjqQ=="
 }
}

Provision of files
Storing DMS objects saves their properties and categories. In order for files to be stored, they must be
provided to the DMSApp and the source category must be mapped to a document type in the mapping
processing. You can provide the files in two ways:

• Providing a file with a URL
• Providing a file via temporary upload

Providing a file with a URL
This chapter explains how to provide a file using a URL. When storing DMS objects, provide the
URL leading to a file in the contentUri property. Before the DMS object is stored, the DMSApp will
download the file via the specified URL (contentUri). The URL must be a relative URL. The respective
user’s information is also transmitted in the HTTP request during the download (AuthSessionID). The
AuthSessionID can be used to identify the user, e.g. to perform a permission check.

Since the file is downloaded in a request, this procedure is not suited for large files. Use the temporary
file upload procedure for larger files. For additional information see Providing a file via temporary upload.

Downloading the provided file

DMS-App-API

47

The DMSApp performs an HTTP GET request to the URL specified in the contentUri parameter. Here
is an example for the DMSApp ’s HTTP GET request for your source system, provided the contentUri
contains the following URL /myapp/sources/mysource/myfile.txt:

Request

GET /myapp/sources/mysource/myfile.txt
Accept: application/octet-stream, */*
AuthSessionID: SampleAuthsessionId

Your source system’s response must look as follows:

Response

HTTP/1.1 200 OK
Content-Length: 3495

<binary content>

Providing a file via temporary upload
This chapter explains how to make a file temporarily available via temporary upload. Temporary upload
is especially useful for large files. Using the (contentLocationUri) URL for the file that was temporarily
uploaded, you can then store the DMS object.

Perform the following steps to upload a file temporarily:

• Determining the URL for a repository
• Determine the link relation used to temporarily upload the file
• Open the URL to temporarily upload the file
• Open the URL to temporarily upload the file (optional)

It is not possible to upload a file temporarily without specifying an ID for a repository.

Determining the URL for a repository

In the chapter Determining a repository, you can learn how to determine the URL for a repository.

Determine the link relation used to temporarily upload the file

You open the URL for a repository as follows:

Request

GET /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27
Accept: application/hal+json

The JSON object for a repository contains the chunkedupload link relation.

Response

{
 "_links": {
 "chunkedupload": {
 "href": "/dms/r/dee1f3d3-
eae8-5d9d-84d8-2d758c5ddc27/blob/chunk/"
 }
 },
 "id": "dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27"
}

DMS-App-API

48

Open the URL to temporarily upload the file

Send an HTTP POST request with the binary data as the Body to the URL that you received in the
chunkedupload link relation. If successful, you will receive the HTTP status code 201 and the URL
(contentLocationUri) in the Location HTTP header.

Request

POST /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/blob/chunk/
Origin: https://baseuri
Content-Type: application/octet-stream

<binary content>

Response

HTTP/1.1 201 Created
Location: /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/blob/chunk/
2018-01-01_temp_master_file_user1_44f7-95a6-58b8400ecf43

In the HTTP Post request, The whole body is considered as binary data of the file to be uploaded.
Currently, the upload using multipart/form-data is not supported.

The maximum size of the body is limited to 100 MB. We recommend a body size of 25 MB. If you
want to upload larger files, you can split the file into different chunks. For additional information, see the
following section.

Open the URL to temporarily upload the file (optional)

You can divide the upload among multiple HTTP requests in order to avoid a timeout for larger files.

To do so, follow the steps below:

• Split the file to be uploaded into different chunks.
• Upload the first chunk as described in "Opening the URL to temporarily upload the file".
• Upload the next chunk by executing an HTTP POST request on the URL that you received in the

header of the response to the first chunk under Location.
• Repeat the previous step successively for all chunks in the correct order.

Request

POST /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/blob/chunk/
2018-01-01_temp_master_file_user1_44f7-95a6-58b8400ecf43
Content-Type: application/octet-stream

<binary content for chunk>

Response

HTTP/1.1 200 OK

Note the following when uploading multiple chunks:

• The chunks can only be uploaded sequentially.
• The order of the HTTP POST request for the chunks must be strictly adhered to.
• If an error occurs during an HTTP POST request (e.g. HTTP status code is not 200), then you must

re-upload the file in all the chunks. Individual chunks cannot be reuploaded.

DMS-App-API

49

You receive the following possible responses to the requests:

Status code Description

200 OK A chunk was successfully uploaded.

201 Created The first chunk was successfully uploaded.

404 Not Found The resource was not found. An unknown repository ID was specified, for example.

500 Internal Server Error An internal error occurred while processing.

Response format for errors
Released: JSON representation

In this chapter, you will learn about the output format for errors. Depending on the result of the storage
process, the HTTP request is answered with different HTTP status codes. Descriptive information can be
returned as an option.

Example for a response upon a failed request:

Response

HTTP/1.1 400 BadRequest

{
 "reason": "10019: Missing value for a mandatory property.",
 "severity": 1,
 "errorCode": 10019
}

Description of parameters for response upon a failed request:

Property Description

reason An optional short description of why the error has occurred. This text is used as the error message’s title.

hint An optional message for the user containing troubleshooting tips.

details Optional detailed information about the error.

severity Optional error severity. Possible values are:

Success = 0,
Information = 1,
Warning = 2,
Error = 3

errorCode An optional error code, as returned by d.3 server.

requestId ID of the associated request During additional requests, the ID is transferred to other apps and serves tracing
purposes when an action is processed.

Additional parameters, if the DMS object to be stored is recognized as a duplicate:

Property Description

dmsObjectId Contains the ID of the already existing DMS object.

_links Contains the link relation dmsobject referencing the already existing DMS object.

The exclusive processing of a DMS object is required so users in Microsoft Office 365 can process an
element. If processing via Office 365 is not complete, the request fails, and you receive the status code
403 Forbidden with the corresponding error information as the response. Please repeat the request at a
later time.

Format of the response for successful requests with detailed information
Released: JSON representation

DMS-App-API

50

In this chapter, you will learn about the output format for detailed information on successful requests.
Depending on the result of the processing, the HTTP request is returned with descriptive detailed
information.

Description of the parameters for the response to the successful request with detailed information:

Property Description

responseDetails Array with detailed information about the request

Description of the parameters of a responseDetails object:

Property Description

code Code of the type String defining the detailed information:

• DmsApp-Mapping-IgnoredDestinationSystemPropertyDueToUpdateMode
• DmsApp-Mapping-IgnoredNotModifiableDestinationProperty
• DmsApp-Mapping-MappingForSourceNotFound
• DmsApp-Mapping-NoDestinationCategoryFoundWithDestinationProperty
• DmsApp-Mapping-NoMappingFoundForSourceCategory
• DmsApp-Mapping-NoMappingFoundForSourceProperty
• DmsApp-Mapping-NoSourceProperties
• DmsApp-Mapping-NoValuesGivenForSourceProperty
• DmsApp-Mapping-PropertyStatusIgnored
• DmsApp-Mapping-UnknownDestinationCategory

title Title that briefly states what detailed information is involved.

detail Detailed description for detailed information.

hint Optional further reference with possible information on actions.

data Optional parameter that contains further data on the detailed information, e.g. for programmatic evaluation of data.

Description of the parameters of a ResponseDetailData object:

Property Description

destinationItemValue Current value of the target item.

sourceItemId ID of the source item to which the detailed information refers (e.g. source, source property, source
category).

destinationItemId ID of the target item assigned to the source item (e.g. target property, target category).

sourceItemValue Value of the source item to be written into the target item.

Examples of a response for a successful request with detailed information on the respective Response-
Detail codes:

Example 1: DmsApp-Mapping-IgnoredNotModifiableDestinationProperty

HTTP/1.1 200 OK

{
 "responseDetails": [
 {
 "code": "DmsApp-Mapping-
IgnoredNotModifiableDestinationProperty",
 "title": "Ignored source property",
 "detail": "The source property with the ID 'myprop1_ID' was
ignored because the mapped destination property with the ID '5' ('Name')
is not modifiable. The current value for the property is 'Value of Name'
and is not overwritten by the given value 'Value for myprop1'.",
 "hint": "Please adjust the d.3 configuration if you still want
to write the values or contact your administrator.",
 "data": {

DMS-App-API

51

 "sourceItemId": "myprop1_ID",
 "sourceItemValue": "Value for myprop1",
 "destinationItemId": "5",
 "destinationItemValue": "Value of Name"
 }
 }
]
}

Example 2: DmsApp-Mapping-NoMappingFoundForSourceCategory

HTTP/1.1 200 OK

{
 "responseDetails": [
 {
 "code": "DmsApp-Mapping-NoMappingFoundForSourceCategory",
 "title": "Ignored source category",
 "detail": "The source category with the ID 'CAT1' was ignored
because no mapping to a destination category was found.",
 "hint": "Please configure a mapping for the given source
category or contact your administrator.",
 "data": {
 "sourceItemId": "CAT1"
 }
 }
]
}

Example 3: DmsApp-Mapping-IgnoredDestinationSystemPropertyDueToUpdateMode

HTTP/1.1 200 OK

{
 "responseDetails": [
 {
 "code": "DmsApp-Mapping-
IgnoredDestinationSystemPropertyDueToUpdateMode",
 "title": "Ignored source property",
 "detail": "The source property with the ID 'PROP2'
was ignored because the mapped destination property with the ID
'property_document_number', which is a system property, cannot be changed
in update mode.",
 "data": {
 "sourceItemId": "PROP2",
 "destinationItemId": "property_document_number"
 }
 }
]
}

Example 4: DmsApp-Mapping-MappingForSourceNotFound

HTTP/1.1 200 OK

{
 "responseDetails": [

DMS-App-API

52

 {
 "code": "DmsApp-Mapping-MappingForSourceNotFound",
 "title": "Mapping configuration not found",
 "detail": "No mapping configuration was found for the source
with the ID '/myapp/sources/mysourcex'. For this reason, no mapping is
applied and any given values for properties or categories are ignored.",
 "hint": "Please configure a mapping for the given source or
contact your administrator.",
 "data": {
 "sourceItemId": "/myapp/sources/mysourcex"
 }
 }
]
}

Example 5: DmsApp-Mapping-NoDestinationCategoryFoundWithDestinationProperty

HTTP/1.1 200 OK

{
 "responseDetails": [
 {
 "code": "DmsApp-Mapping-
NoDestinationCategoryFoundWithDestinationProperty",
 "title": "Ignored source property",
 "detail": "The source property with the ID 'myprop1_ID' was
ignored because the mapped destination property with the ID '5' was not
found in any destination category.",
 "data": {
 "sourceItemId": "myprop1_ID",
 "destinationItemId": "5"
 }
 }
]
}

Example 6: DmsApp-Mapping-NoMappingFoundForSourceProperty

HTTP/1.1 200 OK

{
 "responseDetails": [
 {
 "code": "DmsApp-Mapping-NoMappingFoundForSourceProperty",
 "title": "Ignored source property",
 "detail": "The source property with the ID 'PROP3' was ignored
because no mapping to a destination property was found.",
 "hint": "Please configure a mapping for the given source
property or contact your administrator.",
 "data": {
 "sourceItemId": "PROP3"
 }
 }
]
}

Example 7: DmsApp-Mapping-NoSourceProperties

DMS-App-API

53

HTTP/1.1 200 OK

{
 "responseDetails": [
 {
 "code": "DmsApp-Mapping-NoSourceProperties",
 "title": "No source properties given",
 "detail": "No source properties were given that could be
mapped."
 }
]
}

Example 8: DmsApp-Mapping-NoValuesGivenForSourceProperty

HTTP/1.1 200 OK

{
 "responseDetails": [
 {
 "code": "DmsApp-Mapping-NoValuesGivenForSourceProperty",
 "title": "Ignored source property",
 "detail": "The source property with the ID 'myprop1_ID' was
ignored because no values were given.",
 "data": {
 "sourceItemId": "myprop1_ID"
 }
 }
]
}

Example 9: DmsApp-Mapping-PropertyStatusIgnored

HTTP/1.1 200 OK

{
 "responseDetails": [
 {
 "code": "DmsApp-Mapping-PropertyStatusIgnored",
 "title": "Ignored source property",
 "detail": "The source property with the ID 'myprop1_ID' was
ignored because it is mapped to the destination property 'status' (ID:
'property_state') and other source properties were given. A status transfer
is only possible if no other properties are changed.",
 "hint": "For a status transfer please send only the property
‘status’. Change the other properties in another request.",
 "data": {
 "sourceItemId": "myprop1_ID",
 "destinationItemId": "property_state"
 }
 }
]
}

Example 10: DmsApp-Mapping-UnknownDestinationCategory

DMS-App-API

54

HTTP/1.1 200 OK

{
 "responseDetails": [
 {
 "code": "DmsApp-Mapping-UnknownDestinationCategory",
 "title": "Ignored source category",
 "detail": "The source category with the ID 'mycat1_ID'
was ignored because the mapped destination category with the id
'destcat1_ID' is unknown or the user does not have permission for the
category.",
 "data": {
 "sourceItemId": "mycat1_ID",
 "destinationItemId": "destcat1_ID"
 }
 }
]
}

Feedback using "SuccessCallback" and "Userdata"
This chapter explains how to receive feedback about the saving process. In addition, you can provide
the user with various options in the storage dialog. If the saving process was successful, you can analyze
the options that were selected by a user in your source system. However, you can also receive feedback
without having provided options to the user.

Providing options for the user in the storage dialog

In addition to the mapping process data, you can display various options to your users in the storage
dialog. The user can select one of the options. In order to make these options available, add the userdata
array to the JSON object sourceProperties. For more information, see Defining the parameters for
storage.

You can suggest a possible selection to the user. If you do not suggest an option, the user must select
an option him/herself prior to saving the DMS object. Once saving has been successfully performed, the
option selected by the user is transferred to the (successCallbackUri) URL.

The JSON object sourceProperties with the userdata array looks as follows:

{
 "properties": [
 ...
],
 "userdata": [{
 "key": "postProcessingOption",
 "display": "My post processing options",
 "values": [
 {"value":"1", "display": "Action 1", "default":"false"},
 {"value":"2", "display": "Default action 2",
"default":"true"},
 {"value":"3", "display": "Action 3", "default":"false"}
]
 }]
}

Feedback after successfully saving

DMS-App-API

55

If you would like to receive feedback, specify the successCallbackUri parameter as soon as the DMS
object was successfully saved. You will receive an HTTP POST request for this URL with a JSON object
in the request.

The request to send a DMSApp could appear as follows:

Request

POST /myapp/sources/mysource/myfile/success
Origin: https://baseuri
Accept: application/hal+json
Content-Type: application/hal+json

{
 "_links": {
 "dmsobjectwithmapping": {
 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/
D000001234?sourceId=%2Fmyapp%2Fsources%2Fmysourc"
 }
 },
 "userdata": [
 {
 "postProcessingOption": ["2"]
 }
]
}

Description of the JSON object that is transferred for POST:

Property Description

_links Contains the dmsobjectwithmapping link relation. The link relation is a relative URL for the details of the stored DMS
object.

userdata Specifies the array with the results of which options a user had selected as name-value pair (key value). The userdata
property only exists if you have provided options to the user.

Provide a corresponding HTTP status code as a response to the request of the DMSApp. Based on your
status code, the storage dialog displays a corresponding success or error message. You can transmit
additional information in your response as a JSON object.

Example of your response for a request:

Response

HTTP/1.1 400 BadRequest

{
 "reason": "My error message",
 "severity": 3
}

Description of the parameters for the response to the request:

Property Description

reason An optional short description of why the error has occurred. This text is used as the error message’s title.

hint An optional message for the user containing troubleshooting tips.

details Optional detailed information about the error.

DMS-App-API

56

Property Description

severity Optional error severity. Possible values are:

Success = 0,
Information = 1,
Warning = 2,
Error = 3

Deleting the current version of a DMS object without user interaction
Released: JSON representation

You can delete the current version of an existing DMS object in a d.3 repository without the need for
action by the user.

To delete the current version of a DMS object, you must perform the following steps:

• Determining the URL for a repository
• Determine the link relation for the existing DMS object
• Determine the link relation for deleting the current version of an existing DMS object
• Open the URL to delete the current version of the DMS object

Determining the URL for a repository

In the chapter Determining a repository, you can learn how to determine the URL for a repository.

Determine the link relation for the existing DMS object

To determine a URL for an existing DMS object, perform a search and evaluate the self link relation for
an item in the result list. The chapter Retrieving and viewing the results of a search operation provides
you with more information about performing a search and the description of a result list item.

Determining the link relation for deleting the current version of the existing DMS object

To determine the URL for deleting the current version of the DMS object, evaluate the delete and dele-
teWithReason link relations for an item in the result list. If it is essential for a reason for deletion to
be specified, for example, when deleting a version that has already been released, the deleteWithRea-
son link relation is available. Otherwise, the delete link relation contains the URL for deletion. If both
link relations are missing, please check the authorizations for deleting the version of the DMS object. If
the existing DMS object is being processed, the authenticated user must be the one processing the DMS
object.

Open the URL to delete the current version of the DMS object

Send an HTTP DELETErequest for the delete or deleteWithReason link relations determined for the
existing DMS object. If you want to a reason for deletion to be communicated, this must be entered in
the body of the request. The reason for deletion must contain at least 3 characters and have a maximum
of 80 characters.

Request

DELETE /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/A00000001
Origin: https://baseuri
Accept: application/hal+json
Content-Type: application/hal+json

{"reason":"Created accidentally."}

If the call is successful, HTTP 200 OK is returned: If the body is empty, the entire DMS object was
deleted. If the DMS object contains more versions, the body contains additional link relations. If it

DMS-App-API

57

contains the self link relation, it means there are more versions for the DMS object and you can call up
more details for the DMS object using this URL. You can delete the next version of the DMS object using
the delete or deleteWithReason link relations. If these link relations are not available, it means that the
user is not authorized to delete the next version.

Response

HTTP/1.1 200 OK

{
 "_links": {
 "self": {
 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/
A00000001"
 },
 "delete": {
 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/
A00000001"
 }
 }
}

If deletion of the version fails, an appropriate response is displayed. For more information, see Overview
of formats for errors.

The exclusive processing of a DMS object is required so users in Microsoft Office 365 can process an
element. If processing via Office 365 is not complete, the request fails, and you receive the status code
403 Forbidden with the corresponding error information as the response. Please repeat the request at a
later time.

Retrieving, saving and editing mapping
Released: JSON representation

In this chapter, you can learn how to create and manage mapping for properties and for the categories of
a source system (for instance, an e-mail application) for a d.3 repository. This mapping is used for storage,
for retrieving the details of an element and for retrieving and displaying the results of searches in d.3one
integrations. When saving a mapping, you choose which external data (for instance, the properties of an
e-mail) is assigned to which d.3 document property.

There can only be one unique mapping for each source in a source system.

The Defining a source system chapter explains how to create a source for mapping. In the Basic informa-
tion about mapping chapter, you can find general information for helping you to create mappings. For
useful information about write access, see Basic information about write access.

Determining the link relation for managing mapping

In the chapter Determining a repository, you can learn how to determine the URL for a repository. Then,
execute an HTTP Get request for the REST resource for a repository as follows:

Request

GET /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27
Accept: application/hal+json

The JSON object for a repository contains the link relation mappingconfig.

Response

DMS-App-API

58

{
 "_links": {
 "mappingconfig": {
 "href": "/dms/r/dee1f3d3-
eae8-5d9d-84d8-2d758c5ddc27/m/"
 }
 },
 "id": "dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27"
}

Storing mapping

Send an HTTP POST request with the mapping for your source system as the Body for the URL that you
received in the mappingconfig link relation. If the mapping is stored successfully, you receive the HTTP
status code 201 Created.

Request

POST https://host/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/m HTTP/1.1
Origin: https://host
Accept: application/hal+json
Content-Type: application/hal+json

{
 name: "My Source",
 sourceId: "/myapp/sources/mysource",
 mappingItems: [{
 destination: "RECH",
 source: "mycategory1_ID",
 type: 1
 },
 {
 destination: "3",
 source: "myprop1_ID",
 type: 0
 },
 {
 destination: "property_caption",
 source: "myprop2_ID",
 type: 0
 }]
}

The JSON object that is transferred to POST is described as follows:

Proper-
ty

Property
of a con-

tained ob-
ject

Description

name - Specifies the name of the mapping.

sour-
ceId

- Indicates the unique identifier of the source.

The ID must be a relative URI. The relative URI should start with the name of the app that provides
the source system in order to ensure uniqueness (e.g. /myapp/sources/mysource).

map-
pingI-
tems

- Specifies the array with the mapping elements. This array maps the properties and categories from
the source system to the properties and categories of the d.3 repository.

DMS-App-API

59

Proper-
ty

Property
of a con-

tained ob-
ject

Description

type Specifies the mapping element type. Possible values are:

When the value is 0, the mapping element relates to a property.

When the value is 1, the mapping element relates to a category.

source Specifies the ID of the property in the source system.

destina-
tion

When you map a category, destination specifies the ID of the category in the d.3 repository.

If you map a property, destination contains one of the following values:

• The advanced property ID as it is defined in the d.3 repository.
• property_last_modified_date
• property_last_alteration_date
• property_editor
• property_remark1
• property_remark2
• property_remark3
• property_remark4
• property_owner
• property_caption
• property_filename
• property_filetype
• property_document_number
• property_variant_number
• property_creation_date
• property_size
• property_state
• property_access_date
• property_colorcode

When you want to specify the creation date (property_creation_date) of the DMS object, the spec-
ification of the property is only considered when a new DMS object is saved without any user
interaction. For more information, see Storing a new DMS object without user interaction.

Please note that you can only specify d.3 properties as target that are assigned to at least one d.3
category as property.

Retrieving stored mapping

To retrieve the mapping, execute an HTTP GET request for the URL /dms/r/<RepositoryID>/m?sour-
ceId=<SourceID>. The value of the sourceID property indicates the unique identifier of the source (for
example, /myapp/sources/mysource).

Request

GET https://host/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/m?
sourceId=%2Fmyapp%2Fsources%2Fmysource HTTP/1.1
Accept: application/hal+json

As the response, you receive the object with the stored mapping.

Response

HTTP/1.1 200 OK
Content-Type: application/hal+json

{
 mappings: [{
 _links: {
 self: {
 href: "/dms/r/dee1f3d3-

DMS-App-API

60

eae8-5d9d-84d8-2d758c5ddc27/m/<MappingContainerID>"
 }
 }
 name: "My Source",
 sourceId: "/myapp/sources/mysource",
 mappingItems: [{
 destination: "RECH",
 source: "mycategory1_ID",
 type: 1
 },
 {
 destination: "3",
 source: "myprop1_ID",
 type: 0
 },
 {
 destination: "property_caption",
 source: "myprop2_ID",
 type: 0
 }]
 }]
}

The properties of the objects are the same properties as when the mappings are stored.

Deleting stored mapping

When you retrieve mapping for your source, you receive a link relation for each stored mapping
(_links.self.href). For this URL, you can execute an HTTP Delete request to delete the mapping.

Request

DELETE https://host/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/m/
<MappingContainerID> HTTP/1.1
Origin: https://host
Accept: application/hal+json

Editing stored mapping

When you retrieve mapping for your source, you receive a link relation for each stored mapping
(_links.self.href). For this URL, you can execute an HTTP PUT request to update the map. The object that
you transfer is the same as the object for storing mapping.

Request

PUT https://host/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/m/
<MappingContainerID> HTTP/1.1
Origin: https://host
Accept: application/hal+json
Content-Type: application/hal+json

{
 name: "My Source",
 sourceId: "/myapp/sources/mysource",
 mappingItems: [{
 destination: "RECH",
 source: "mycategory1_ID",
 type: 1

DMS-App-API

61

 },
 {
 destination: "3",
 source: "myprop1_ID",
 type: 0
 },
 {
 destination: "property_caption",
 source: "myprop2_ID",
 type: 0
 }]
}

Retrieving and saving the notes of a DMS object
Released: JSON representation

This chapter explains how to retrieve and save the notes of a DMS object.

To retrieve or save the notes of a DMS object, you must perform the following steps:

• Determining the URL for a repository
• Determine and open the link relation for retrieving the details of a DMS object
• Determine the link relation for retrieving the notes of a DMS object
• Open the URL for the notes of a DMS object

Determining the URL for a repository

In the chapter Determining a repository, you can learn how to determine the URL for a repository.

Determine and open the link relation for retrieving the details of a DMS object

In the chapter Retrieving and viewing the details of a DMS object, you can learn how to determine and
open the URL for retrieving the details of a DMS object.

Determine the link relation for retrieving the notes of a DMS object

The JSON object for the details of a DMS object contains the link relation notes, which you can use to
retrieve the notes of the DMS object.

Response

{
 "_links": {
 "notes":{
 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/
D000000123/n"
 }
 },
 "id": "D000000123"
}

Retrieving the notes of a DMS object

Retrieve the notes of the DMS object with the previously determined URL as follows:

Request

DMS-App-API

62

GET https://host/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/
D000000123/n HTTP/1.1
Accept: application/hal+json

As the response, you receive the object with the notes of the DMS object:

Response

HTTP/1.1 200 OK
Content-Type: application/hal+json

{
 "_links": {
 "self": {
 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/
D000000123/n"
 }
 },
 "notes": [
 {
 "creator": {
 "id": "MargaS",
 "displayName": "Marga Schilling"
 },
 "text": "This is a sample text.",
 "created": "2019-09-03T09:09:09.453+02:00"
 }
],
 "description": "1 note available",
 "canAddNote": true
}

Property Description

_links self: self-referencing link (self-link)

notes Specifies the array with the note elements of the DMS object.

description Specifies how many notes there are.

canAddNote Specifies whether notes can be added.

Structure of a note element

Property Description

creator Returns an object with information on the user who has written the note.

text Contains the content of the note.

created Specifies the unique timestamp indicating the time the note was written. The timestamp is returned in ISO format.

Structure of a creator object

Property Description

id Returns the unique ID of the d.3 user.

displayName Returns the display name of the d.3 user.

Saving the notes of a DMS object

With a HTTP POST request for the previously determined URL you can create a note for a DMS object.
If you want to create multiple notes, repeat the process. Save a note as follows:

DMS-App-API

63

Request

POST https://host/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/
D000000123/n HTTP/1.1
Content-Type: application/json
Content-Length: 42

{
 "text": "This is a sample text."
}

Response

HTTP/1.1 200 OK

Structure of the note object

Property Description

text Contains the content of the note.

Retrieving and displaying the versions of a DMS object
Released: JSON representation, HTML page

You can retrieve the versions of a DMS object as JSON representations or display the versions of a DMS
object.

To retrieve or display the versions of a DMS object, you must perform the following steps:

• Determine the link relation for retrieving and displaying the versions of a DMS object
• Open the URL for the versions of a DMS object

Determine the link relation for retrieving and displaying the versions of a DMS object

In the chapter Retrieving and viewing the details of a DMS object, you can learn how to determine the
link relation for the versions of a DMS object.

Retrieving and displaying the versions of a DMS object (JSON representation)

Once you have the URL of the versions from the link relation, then you can retrieve the versions of a
DMS object as follows:

Request

GET /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/D000000123/v/
Accept: application/json
Accept-Language: en

The following JSON object will then be returned as a result:

Response

{
 "_links": {
 "self": {
 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/
D000000123/v/"
 }
 },

DMS-App-API

64

 "versions": [{
 "_links": {
 "mainblobcontent": {
 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2/
D000000123/v/6_3/b/main/c"
 },
 "pdfblobcontent": {
 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2/
D000000123/v/6_3/b/p1/c"
 },
 "self": {
 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/
D000000123/v/6_3"
 }
 },
 "alterationText": "",
 "caption": "3 Processing",
 "creationDate":"2019-10-25T12:22:56.000+02:00",
 "id": "6_3",
 "mimeType":"application/msword",
 "state":"Processing"
 },
 {
 "_links": {
 "mainblobcontent": {
 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2/
D000000123/v/3_2/b/main/c"
 },
 "pdfblobcontent": {
 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2/
D000000123/v/3_2/b/p1/c"
 },
 "self": {
 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/
D000000123/v/3_2"
 }
 },
 "alterationText": "Reasons for changes",
 "caption": "2 Release",
 "creationDate":"2019-10-22T16:29:32.000+02:00",
 "id": "3_2",
 "mimeType":"application/msword",
 "state":"Released"
 },
 {
 "_links": {
 "mainblobcontent": {
 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2/
D000000123/v/1_1/b/main/c"
 },
 "pdfblobcontent": {
 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2/
D000000123/v/1_1/b/p1/c"
 },
 "self": {

DMS-App-API

65

 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/
D000000123/v/1_1"
 }
 },
 "alterationText": "Reasons for changes",
 "caption": "1 Archive",
 "creationDate":"2019-10-12T11:49:41.000+02:00",
 "id": "1_1",
 "mimeType":"application/msword",
 "state":"Archived"
 }
]
}

Property Description

_links Contains the link relations:

self: Self-link

versions Specifies the array with the versions.

Structure of a version

Property Description

_links Contains the link relations for the version of a DMS object.

mainblobcontent: Relative download URL for the main document of the DMS object version.

pdfblobcontent: Relative download URL for the dependent PDF document of the version of the DMS object. You
will only receive this URL if a dependent PDF document has been created for the DMS object.

self: Self-link.

alterationText Specifies the alteration text for the release of the version.

caption Specifies the display name of the version. This value is output for the specific language by evaluating the
Accept-Language HTTP header.

creationDate Specifies the creation date of the version.

id Specifies the ID of the version.

mimeType Specifies the type of the main document.

state Specifies the status of the version. The values available are Processing, Verification, Released and Archived.

Retrieving and displaying the versions of a DMS object (HTML page)

If you want to call the HTML view of the versions, determine the link relation for the versions of a DMS
object. Enter the URL in the browser to view the HTML page. This HTML page contains the list of the
versions of a DMS object.

Example:

Request

GET /dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/D000000123/v/
Accept: text/html

Linking DMS objects
Released: JSON representation

In this chapter, you can learn how to link DMS objects with other DMS objects hierarchically independ-
ent from their type.

To link DMS objects to each other, perform the following steps:

DMS-App-API

66

• Determining the URL for a repository
• Determine and open the link relation for retrieving the details of a DMS object
• Determine the link relation for linking DMS objects
• Linking DMS objects

Determining the URL for a repository

In the chapter Determining a repository, you can learn how to determine the URL for a repository.

Determine and open the link relation for retrieving the details of a DMS object

In the chapter Retrieving and viewing the details of a DMS object, you can learn how to determine and
open the URL for retrieving the details of a DMS object.

Determine the link relation for linking DMS objects

The JSON object for the details of a DMS object contains the link relation linkDmsObjects, which you
can use to link DMS objects.

Response

{
 "_links": {
 "linkDmsObjects":{
 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/
D000000123/children"
 }
 },
 "id": "D000000123"
}

Linking DMS objects

To link a DMS object to the transferred DMS objects, execute an HTTP POST request with the list of IDs
of the DMS objects to be linked as the body to the URL determined above as follows:

Request

POST https://host/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/D000000123/
children HTTP/1.1
Accept: application/hal+json

Content-Type: application/hal+json

{
 "dmsObjectIds": [
 "D000000089",
 "D000000127",
 "D000004567",
]
}

The JSON object that is transferred to POST is described as follows:

Property Description

dmsObjectIds Specifies the array with the IDs of the DMS objects (of the String type) that are to be linked to the DMS object.

DMS-App-API

67

As the response, you receive the HTTP status code 200 (OK) if the link was successful. If the link was
not successful or was successful only for individual DMS objects, you receive the HTTP status code 207
(multi-status) and a list with detailed information about the individual link operations.

Example of a response to a partly failed request:

Response

HTTP/1.1 207 Multi-Status
Content-Type: application/hal+json

{
 "requestId": "XyErwIKPhyGaMg9dxcGksgAAA@A",
 "linkDocumentErrorPageModels": [
 {
 "dmsObjectId": "D000000089",
 "errorPageModel": {
 "reason": "These documents are already linked to each other!
[0000071] ",
 "severity": 1,
 "errorCode": 71
 }
 },
 {
 "dmsObjectId": "D000000127",
 "errorPageModel": {
 "reason": "These documents are already linked to each other!
[0000071] ",
 "severity": 1,
 "errorCode": 71
 }
 },
 {
 "dmsObjectId": "D000004567",
 "errorPageModel": {
 "reason": "These documents are already linked to each other!
[0000071] ",
 "severity": 1,
 "errorCode": 71
 }
 }
]
}

Description of parameters for response upon a failed request:

Property Description

requestId ID of the associated request During additional requests, the ID is transferred to other apps and
serves tracing purposes when an action is processed.

linkDocumentErrorPageMo-
dels

An array with error messages for a link operation.

Structure of a response object for a link operation

Property Description

dmsObjectId The ID of the DMS object to be linked.

DMS-App-API

68

Property Description

errorPageModel An object with a description of whether the link was successful.

Response format for errors

Property Description

errorCode An optional error code, as returned by d.3 server.

reason An optional short description of why the error has occurred. This text is used as the error message’s title.

severity Optional error severity. Possible values are:

Success = 0,
Information = 1,
Warning = 2,
Error = 3

Removing a DMS object link
This function is available only for on-premises installations.

Released: JSON representation

This chapter explains how to remove the link between two DMS objects. You can only remove links of
DMS objects individually.

To remove the link between two DMS objects, you must perform the following steps:

• Determining the URL for a repository
• Determine and open the link relation for retrieving the details of a DMS object
• Determine the link relation for removing the link between two DMS objects
• Open the URL for removing the link between two DMS objects

Determining the URL for a repository

In the chapter Determining a repository, you can learn how to determine the URL for a repository.

Determine and open the link relation for retrieving the details of a DMS object

In the chapter Retrieving and viewing the details of a DMS object, you can learn how to determine and
open the URL for retrieving the details of a DMS object.

Determine the link relation for removing the link between two DMS objects

The JSON object for the details of a DMS object contains the link relation unlinkDmsObject with a
placeholder for the ID of the parent DMS object for which you want to remove the link to the dossier.

Response

{
 "_links": {
 "unlinkDmsObject": {
 "href": "/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/
{parentDmsObjectId}/children/D000004567"
 }
 },
 "id": "D000000123"
}

Open the URL for removing the link between two DMS objects

DMS-App-API

69

Execute an HTTP DELETE request with the ID of the DMS object as a parameter in the URL determined
above as follows to remove the link between the DMS object and the dossier:

Request

DELETE https://host/dms/r/dee1f3d3-eae8-5d9d-84d8-2d758c5ddc27/o2m/
D000000123/children/D000004567 HTTP/1.1
Accept: application/hal+json

As the response, you receive the HTTP status code 200 (OK) if the removal of the link was successful.
If the removal of the link was unsuccessful, you receive the HTTP status code 400 (bad request) and
detailed information about the error.

Example for a response upon a failed request:

Response

HTTP/1.1 400 Bad Request
Content-Type: application/hal+json

{
 "reason": "These two documents are not linked with each other. [0000073]
",
 "severity": 1,
 "errorCode": 73,
 "requestId": "XyEWT4KPhyGaMg9dxcGNiAAAA@c"
}

If you want to remove multiple DMS objects, repeat this step.

Description of parameters for response upon a failed request:

Response format for errors

Property Description

reason An optional short description of why the error has occurred. This text is used as the error message’s title.

severity Optional error severity. Possible values are:

Success = 0,
Information = 1,
Warning = 2,
Error = 3

errorCode An optional error code, as returned by d.3 server.

requestId ID of the associated request During additional requests, the ID is transferred to other apps and serves tracing
purposes when an action is processed.

1.4.4. Adding your own functions (DMSApp)
In this section, you can learn how to add your own functions to the DMSApp.

• Using extension points

Using extension points
Extension points allow you to enhance the DMSApp with your own functions. The DMSApp provides
extension points at the following positions:

• Replacing the content of the "View" perspective in the detail view
• Adding context actions to lists
• Adding context actions to detail view

DMS-App-API

70

There are two ways you can extend the extension points in the DMSApp:

• Providing via URL
• Creating via the API in the DMSApp

Preparing your app

To ensure that you can find extensions for context actions or for displaying documents from the
DMSApp, your app must provide this user interface. To find apps that provide extensions, DMSApp
uses the concept of an HTTP GET request for the root resource (systemBaseUri path with the app
name) for the apps. All apps registered to the d.ecs http gateway will be requested. Make sure that the
administrator did not actively exclude your app.

Providing the URL for the extension points

The root resources for these apps are requested cyclically. The response of an app is then checked
to determine whether a link relation with the name dmsobjectextensions is included. This link relation
serves as the signal that the app provides extensions for DMSApp. DMSApp executes an HTTP GET to
the specified link and waits for a standardized JSON object with the HTTP status code 200 from the
responding app.

Request

GET https://host/myapp/ HTTP/1.1
Accept: application/hal+json

Response

HTTP/1.1 200 OK
Content-Type: application/hal+json

{
 "_links" : {
 "dmsobjectextensions" : {
 "href" : "/myapp/dmsobjectextensions"
 }
 }
}

Note
The root resources are queried anonymously (without authentication) and this process is
executed as an asynchronous background process within DMSApp.

Creating via the API in the DMSApp

With a HTTP POST request for the URL /dms/extensions you can create an extension in the DMSApp.
If you want to create multiple extensions, repeat the process. The request must be made by a user with
administration rights only. If the request response is successful, the extension is stored in the DMSApp
and you get a location URL in the response header. The structure of the standardized JSON object is
described in the following pages.

Request

POST /dms/extensions
Origin: https://baseuri
Content-Type: application/json
Content-Length: 619

DMS-App-API

71

{
 "id": "myapp.openExternalApp",
 "activationConditions": [{
 "propertyId": "repository.id",
 "operator": "or",
 "values": ["e632f767-5cfa-538d-ab55-6756c36a74c9"]
 }
],
 "captions": [{
 "culture": "de",
 "caption": "Externe Applikation öffnen"
 }, {
 "culture": "en",
 "caption": "Open external application"
 }
],
 "context": "DmsObjectDetailsContextAction",
 "uriTemplate": "/myapp/dosomething?id={dmsobject.property_document_id}",
 "iconUri": "/myapp/images/goto.svg"
}

Response

HTTP/1.1 201 Created
Location: /dms/extensions/dmsapp-custom-myapp.openExternalApp

Via the location URL, a user with administration rights can also delete the extension in the DMSApp. To
do this, an HTTP DELETE requestmust be sent to the Location URLvalue.

Request

DELETE /dms/extensions/dmsapp-custom-myapp.openExternalApp
Origin: https://baseuri

Response

HTTP/1.1 200 OK

Displaying extension points

Released: HTML page

You can display the extension points registered with DMSApp. Simply enter the URL /dms/extensions in
the browser.

Request

GET /dms/extensions
Accept: text/html

Adding context actions to lists
Released: Extension point

If you add context actions to lists with items (e.g. documents and dossiers), they are displayed in the
following sections:

• Results in the Search feature
• Content of a dossier

DMS-App-API

72

• Your lists of favorites and watched items in the Personal Area feature

If the user clicks a context action in a list, the list always first switches to selection mode. In selection
mode, the user can select the desired items and execute the context action.

The app that you want to provide such extensions must return an HTTP response in JSON format under
the dmsobjectextensions link relation. This response must provide the following information for each
context action:

• Extension point context: DmsObjectListContextAction
• Activation condition for displaying the context action.
• Display name for the context action in the available translations.
• Link to the context action icon.
• The action to be performed once the user has completed the selection. Specify a relative link that is

called from DMSApp using HTTP GET.

Any context action can also be created via HTTP POST requestfor the URL /dms/extensions in the
DMSApp. The request must be made by a user with administration rights only. If the request response is
successful, the extension is stored in the DMSApp and you get a location URLin the response header. Via
the location URL, a user with administration rights can also delete the extension in the DMSApp. To do
this, an HTTP DELETE requestmust be sent to the Location URLvalue.

Example

The example shows how you arrange the HTTP response of the dmsobjectextensions link relation to add
a context action using the DmsObjectListContextAction extension point. You define different properties
for each context action.

{
 "extensions": [
 {
 "id": "myapp.exportList",
 "activationConditions": [{
 "propertyId": "repository.id",
 "operator": "or",
 "values": ["e632f767-5cfa-538d-ab55-6756c36a74c9"]
 }],
 "captions": [{
 "culture": "de",
 "caption": "Exportieren"
 },
 {
 "culture": "en",
 "caption": "Export"
 },
 {
 "culture": "en-GB",
 "caption": "Exportin Great Britain"
 }],
 "descriptions": [{
 "culture": "de",
 "description": "Liste als CSV exportieren"
 },
 {
 "culture": "en",
 "description": "Export list as CSV"
 },

DMS-App-API

73

 {
 "culture": "en-GB",
 "description": "Export list as CSV in Great Britain"
 }],
 "context": "DmsObjectListContextAction",
 "uriTemplate": "/myapp/dosomething?url={dmsobjectlist.url}",
 "iconUri": "/myapp/images/export-list.svg",
 "target": "dapi_navigate"
 }]
}

Property Proper-
ties of a

con-
tained
object

Description

id - Specifies the unique technical name used to differentiate the extension from other extensions.

activa-
tionCon-
ditions

For each extension, the application notifies you of which activation conditions are used to display the
context action. These activation conditions are reported by the application in advance. If the activation
conditions were not reported in advance, DMSApp would have to query other apps with a network
request at a later time when the user is viewing an item. The waiting time for the user would then
increase significantly if an app only responds to this request with a delay.

A context action is displayed if all the sub-conditions are met. If the list of activation conditions does
not contain an entry, the extension is generally active.

You specify the activation conditions as an array.

proper-
tyId

Specifies the ID of the property that is tested for the activation condition. The available values are
described in more detail below.

opera-
tor

The operator specifies how a sub-condition is evaluated.

The following operator is available:

or: An or condition is fulfilled if the current value of the property corresponds to one of the values.
Capitalization is not taken into account.

notOr: A notOr condition is fulfilled if the current value of the property does not correspond to any of
the values. Capitalization is not taken into account.

values Specifies the values in the form of an array that is compared with the value of the propertyId property.

DMS-App-API

74

Property Proper-
ties of a

con-
tained
object

Description

captions Each context action notifies you of the name under which it is displayed. You can also include different
languages. In this case, the language-dependent names are specified as an array.

To ensure the language packages are fully compatible, specify the languages for the following Cultures
names:

• cs (Czech)
• da (Danish)
• de (German)
• en (English)
• es (Spanish)
• fr (French)
• hr (Croatian)
• it (Italian)
• nl (Dutch)
• pl (Polish)
• sr (Serbian)
• sk (Slovakian)
• zh-CN (Chinese (simplified))

If the user requests a language for which the extension app does not have any specification for the
localized (language-specific) name, an alternative language is determined for the view based on the
following rules:

• If the language ID with the regional code (e.g. en-GB) is not found, the system checks whether the
higher-level language without the regional code is available (en). In the example above, "Export List" is
displayed for a request of the "en-GB" language because "en" is used as an alternative.

• If the higher-level language is also unavailable, English "en" without the regional code is always used
as the alternative.

• If "en" is also not specified as the alternative, the first specified language is displayed as the alterna-
tive.

culture Specifies the language ID for which the name of the context action is defined. The specification
includes the language code (e.g. en) and optionally an additional regional code (e.g. en-GB).

caption Specifies the language-dependent name of the context action.

descrip-
tions

(Optional) Each context action can indicate which description is displayed for that context action. This
description is displayed as a tooltip for the context action. Different languages are specified as in the
captions property.

culture Specifies the language ID for which the description of the context action is defined. The specification
includes the language code (e.g. en) and optionally an additional regional code (e.g. en-GB).

descrip-
tion

Specifies the language-dependent description of the context action.

context - Specifies the extension point to which you want to add the context action.

Specify the following value for context actions for the detail view:

DmsObjectListContextAction

uriTem-
plate

- In the uriTemplate property, you define the URL that you want to be called when the user has comple-
ted the selection. You can define placeholders to receive more information about the current context.
The placeholders are replaced by the actual properties when the extension is called. The properties are
transferred to the URI with URL encoding. You can find the available placeholders below.

Note
Using a placeholder in the host part of the URL is not permitted for security
reasons and leads to an error.

iconUri - Specifies the link to the icon that is displayed for the context action. The icon file must be available in
SVG format.

The color of the SVG's fill must not be specified, so that the fill color can be adjusted by using the
theming.

If you want to use a custom SVG file for a symbol, we recommend saving the SVG file to the installation
directory d.3one/dms/Client/Custom.

DMS-App-API

75

Property Proper-
ties of a

con-
tained
object

Description

target - (Optional) Specifies where the content of the context action should be displayed.

Possible values:

• dapi_navigate (default value): Navigates to a new main resource with the content within the Shell
app.

• dapi_inner_supply: Opens an Inner Supply (display area below the app bar) with the content.
• dapi_outer_supply: Opens an outer supply (display area above the app bar) with the content.
• _blank: Opens a new tab in the browser with the content.

When defining activation conditions for context actions for lists, use the following values for the proper-
tyId property:

Condi-
tion con-

text

propertyId Description

Reposito-
ry

repository.id ID of the repository as specified in the d.ecs repo app. You can find the repository ID in the
detail section of the d.3 repositories feature (https://<Base address>/repo/repositories/). You
can obtain this ID either by using the URL or clicking All Programs > d.velop > d.3one >
Repository Configuration in the Start menu.

In the chapter Determining a repository, you can learn how to determine the ID for a reposito-
ry with the program.

User user.d3.group_id Activation condition: ID of a d.3 user group (maximum of eight characters) of which the user
that is currently logged in is a member.

user.idp.group_id Activation condition: GUID of an identity provider app user group of which the user that is
currently logged in is a member.

For a context action of the DmsObjectListContextAction type, you can use the following properties as
placeholders in the uriTemplate property:

Property Description

dmsobjectlist.url A URL-encoded URL under which the list of items selected by the user (documents and dossiers) can be
queried. As an HTTP response, you receive this URL as a selectionList JSON array that returns the following
information for each item:

• _links.self.href: Relative URL for the item that you can use to retrieve more detailed information about the
item.

• id: Document ID of the item.
• caption: Title for the item.

Example:

selectionList

 {
 "selectionList":
 [{
 "_links": {
 "self": {
 "href": "/dms/r/e632f767-5cfa-538d-
ab55-6756c36a74c9/o2/A0000000001"
 }
 },
 "id": "A0000000001",
 "caption": "Title of the item"
 },
 ...
]
}

DMS-App-API

76

Property Description

repository.id ID of the repository as specified in the d.ecs repo app. You can find the repository ID in the detail section
of the d.3 repositories feature (https://<Base address>/repo/repositories/). You can obtain this ID either by
using the URL or clicking All Programs > d.velop > d.3one > Repository Configuration in the Start menu.

In the chapter Determining a repository, you can learn how to determine the ID for a repository with the
program.

user.d3.group_id Placeholder uriTemplate: List of IDs of the d.3 user groups (each a maximum of eight characters) of which the
user currently logged in is a member as an array in JSON format.

user.idp.group_id Placeholder uriTemplate: List of GUIDs of the identity provider app user groups of which the user currently
logged in is a member as an array in JSON format.

Adding context actions to detail view
Released: Extension point

You can add context actions to the detail view for an item (DMS object, document or dossier). These
context actions are also summarized in the menu for context actions (three stacked dots) for an item. The
app that you want to provide such an extension must return an HTTP response in JSON format under
the link relation dmsobjectextensions. The response must provide the following information for each
context action:

• Extension point context: DmsObjectDetailsContextAction
• Activation condition for displaying the context action.
• Display name for the context action in the available translations.
• Link to the context action icon.
• The action to be performed once the user has clicked on the context action. Specify a relative link that

is called from DMSApp using HTTP GET.

Any context action can also be created via HTTP POST requestfor the URL /dms/extensions in the
DMSApp. The request must be made by a user with administration rights only. If the request response is
successful, the extension is stored in the DMSApp and you get a location URLin the response header. Via
the location URL, a user with administration rights can also delete the extension in the DMSApp. To do
this, an HTTP DELETE requestmust be sent to the Location URLvalue.

Example

The example shows how you arrange the HTTP response of the dmsobjectextensions link relation to
add a context action using the DmsObjectDetailsContextAction extension point. You define different
properties for each context action.

{
 "extensions": [
 {
 "id": "myapp.openExternalApp",
 "activationConditions": [{
 "propertyId": "repository.id",
 "operator": "or",
 "values": ["e632f767-5cfa-538d-ab55-6756c36a74c9"]
 }],
 "captions": [{
 "culture": "de",
 "caption": "Externe Applikation öffnen"
 },
 {
 "culture": "en",
 "caption": "Open external application"
 }],
 "context": "DmsObjectDetailsContextAction",

DMS-App-API

77

 "uriTemplate": "/myapp/dosomething?
id={dmsobject.property_document_id}",
 "iconUri": "/myapp/images/goto.svg",
 "target": "dapi_navigate"
 }]
}

Property Proper-
ties of a

con-
tained
object

Description

id - Specifies the unique technical name used to differentiate the extension from other extensions.

activa-
tionCon-
ditions

For each extension, the application notifies you of which activation conditions are used to display the
context action. These activation conditions are reported by the application in advance. If the activation
conditions were not reported in advance, DMSApp would have to query other apps with a network
request at a later time when the user is viewing a document. The waiting time for the user would then
increase significantly if an app only responds to this request with a delay.

A context action is displayed if all the sub-conditions are met. If the list of activation conditions does
not contain an entry, the extension is generally active.

You specify the activation conditions as an array.

proper-
tyId

Specifies the ID of the property that is tested for the activation condition. The available values are
described in more detail below.

opera-
tor

The operator specifies how a sub-condition is evaluated.

The following operator is available:

or: An or condition is fulfilled if the current value of the property corresponds to one of the values.
Capitalization is not taken into account.

notOr: A notOr condition is fulfilled if the current value of the property does not correspond to any of
the values. Capitalization is not taken into account.

values Specifies the values in the form of an array that is compared with the value of the propertyId property.

captions Each context action notifies you of the name under which it is displayed. You can also include different
languages. In this case, the language-dependent names are specified as an array.

To ensure the language packages are fully compatible, specify the languages for the following Cultures
names:

• cs (Czech)
• da (Danish)
• de (German)
• en (English)
• es (Spanish)
• fr (French)
• hr (Croatian)
• it (Italian)
• nl (Dutch)
• pl (Polish)
• sr (Serbian)
• sk (Slovakian)
• zh-CN (Chinese (simplified))

If the user requests a language for which the extension app does not have any specification for the
localized (language-specific) name, an alternative language is determined for the view based on the
following rules:

• If the language identifier with the regional code (e.g. en-GB) is not found directly, the system checks
whether the higher-level language (language without regional code) is available (en). In the example
above, "Export List" is displayed for a request of the "en-GB" language because "en" is used as an
alternative.

• If the higher-level language is also unavailable, English "en" without the regional code is always used
as the alternative.

• If "en" is also not specified as the alternative, the first specified language is displayed as the
alternative.

DMS-App-API

78

Property Proper-
ties of a

con-
tained
object

Description

culture Specifies the language ID for which the name of the context action is defined. The specification
includes the language code (e.g. en) and optionally an additional regional code (e.g. en-GB).

caption Specifies the language-dependent name of the context action.

context - Specifies the extension point to which you want to add the context action.

Specify the following value for context actions for the detail view:

DmsObjectDetailsContextAction

uriTem-
plate

- In the uriTemplate property, you define the URL that is to be called when the user clicks on the
context action. You can define placeholders to receive more information about the current context.
The placeholders are replaced by the actual properties when the extension is called. The properties are
transferred to the URI with URL encoding. You can find the available placeholders below.

iconUri - Specifies the link to the icon that is displayed for the context action. The icon file must be available in
SVG format.

The color of the SVG's fill must not be specified, so that the fill color can be adjusted by using the
theming.

If you want to use a custom SVG file for a symbol, we recommend saving the SVG file to the
installation directory d.3one/dms/Client/Custom.

target - (Optional) Specifies where the content of the context action should be displayed.

Possible values:

• dapi_navigate (default value): Navigates to a new main resource with the content within the Shell
app.

• dapi_inner_supply: Opens an Inner Supply (display area below the app bar) with the content.
• dapi_outer_supply: Opens an outer supply (display area above the app bar) with the content.
• _blank: Opens a new tab in the browser with the content.

You can use the following values when defining context actions for the detail view in the following areas:

• Defining activation conditions for the propertyId property
• Defining placeholders in the uriTemplate property

Topic Value Description

Repository repository.id ID of the repository as specified in the d.ecs repo app. You can find the repo-
sitory ID in the detail section of the d.3 repositories feature (https://<Base
address>/repo/repositories/). You can obtain this ID either by using the URL or
clicking All Programs > d.velop > d.3one > Repository Configuration in the Start
menu.

User user.d3.group_id Activation condition: ID of a d.3 user group (maximum of eight characters) of
which the user that is currently logged in is a member.

Placeholder uriTemplate: List of IDs of the d.3 user groups (each a maximum of
eight characters) of which the user currently logged in is a member as an array in
JSON format.

user.idp.group_id Activation condition: GUID of an identity provider app user group of which the
user that is currently logged in is a member.

Placeholder uriTemplate: List of GUIDs of the identity provider app user groups
of which the user currently logged in is a member as an array in JSON format.

Property for
the item

dmsobject.property_edi-
tor

Editor of the item.

dmsobject.proper-
ty_owner

Owner of the item.

dmsobject.property_file-
name

File name for the item.

dmsobject.property_file-
type

File type for the item.

DMS-App-API

79

Topic Value Description

dmsobject.proper-
ty_document_number

Document number of the item.

dmsobject.property_cre-
ation_date

Creation date of the item.

dmsobject.property_size File size of the item.

dmsobject.proper-
ty_state

Document status of the item.

Possible values:

• Archived: The element has the Archive status.
• VerificationInProgress: The element has the Verification status.
• Processing: The element has the Processing status.
• Released: The element has the Released status.

dmsobject.property_var-
iant_number

Variant number of the item.

dmsobject.property_ac-
cess_date

Access date for the item.

dmsobject.property_re-
mark

Remarks about the item.

dmsobject.proper-
ty_last_alteration_date

Alteration date of the item.

dmsobject.proper-
ty_caption

Title for the item.

dmsobject.property_cat-
egory

Item category ID.

dmsobject.property_cat-
egory_uuid

UUID of the item category.

dmsobject.property_col-
orcode

Color marking for the item.

dmsobject.proper-
ty_document_class

Activation condition: A document class abbreviation for the item.

Placeholder uriTemplate: List of document class IDs for the item as an array in
JSON format.

dmsobject.proper-
ty_document_id

Document ID of the item.

dmsobject.property_dis-
play_version_id

Unique ID for the display version for the DMSApp.

dmsobject.type The item type.

Possible values:

• Document: The item is an item of the "Document" type.
• Dossier: The item is an item of the "Dossier" type.

dmsobject.<NUM-
BER|UUID>

For the <NUMBER|UUID> placeholder, enter the advanced property ID or UUID
as it is defined in the d.3 repository.

If the d.3 property is a multi-value property, the placeholder will be replaced by
the first or the first filled value of the property (depending on the d.3 repository
configuration). If there are multiple values for the multi-value property, three
dots (...) are added to the value returned.

dmsobject.fieldposi-
tion.<NUMBER>

For the <NUMBER> placeholder, enter the database position of the advanced
property.

Note
We strongly recommend using the advanced property ID
(dmsobject.<NUMBER>). Use the database position only in
exceptional cases when the advanced property ID is not
available to you or can only be determined in a very time-
consuming process.

If the d.3 property is a multi-value property, the placeholder will be replaced by
the first or the first filled value of the property (depending on the d.3 repository
configuration). If there are multiple values for the multi-value property, three
dots (...) are added to the value returned.

DMS-App-API

80

Topic Value Description

dmsobject.self_url_rela-
tive

Relative URL of the item.

Original file for
the item

dmsobject.main-
blob.content_type

MIME type of the original file (e.g. text\plain or image\jpeg).

dmsobject.main-
blob.content_url

(Obsolete) Absolute URL of the original file. If the user does not have the
authorization to export the document, then this parameter is empty.

dmsobject.main-
blob.content_url_rela-
tive

Relative URL of the original file. If the user does not have the authorization to
export the document, then this parameter is empty.

dmsobject.mainblob.id ID of the original file if the user has the right to export the original file.

Dependent
files for the
item

dmsobject.dependent-
blobs

List of the IDs of dependent files if the user has the right to export the depend-
ent file.

dmsobject.dependent-
blob.ID.content_url

(Obsolete) Absolute URL of the dependent file with the ID from dmsobject.de-
pendentblobs.

dmsobject.dependent-
blob.ID.content_url_rela-
tive

Relative URL of the dependent file with the ID from dmsobject.dependentblobs.

Replacing the content of the "View" perspective in the detail view
Released: Extension point

You can replace the content of the View perspective for the detail view for an item (e.g. a document or
dossier) so that you can display your own preview under certain conditions.

The app that you want to provide such an extension must return an HTTP response in JSON format
under the dmsobjectextensions link relation. This response must provide the following information for
each extension point of the View perspective:

• Extension point context: DmsObjectDetailsPreview
• Activation condition for displaying your preview.
• The URL for the preview that you want to display when the user opens the View perspective in the

detail view and meets your predefined activation conditions. Specify a relative link that is called from
DMSApp using HTTP GET.

Any context action can also be created via HTTP POST requestfor the URL /dms/extensions in the
DMSApp. The request must be made by a user with administration rights only. If the request response is
successful, the extension is stored in the DMSApp and you get a location URLin the response header. Via
the location URL, a user with administration rights can also delete the extension in the DMSApp. To do
this, an HTTP DELETE requestmust be sent to the Location URLvalue.

Example

The example shows how you arrange the HTTP request to add an extension for the DmsObjectDetail-
sPreview extension point. You define different properties for each extension.

 {
 "id": "myapp.viewer",
 "activationConditions": [{
 "propertyId": "dmsobject.mainblob.content_type",
 "operator": "or",
 "values": [
 "text/plain",
 "application/pdf"
]
 }],
 "context": "DmsObjectDetailsPreview",
 "uriTemplate": "/myapp/preview?

DMS-App-API

81

layer0={dmsobject.mainblob.content_url}"
 }

Property Proper-
ties of a

con-
tained
object

Description

id - Specifies the unique technical name used to differentiate the extension from other extensions.

activa-
tionCon-
ditions

For each extension, the application notifies you of which activation conditions are used to display
the extension of the View perspective. These activation conditions are reported by the application
in advance. If the activation conditions were not reported in advance, DMSApp would have to query
other apps with a network request at a later time when the user is viewing an item. The waiting time
for the user would then increase significantly if an app only responds to this request with a delay.

An extension is displayed if all the sub-conditions are met. If the list of activation conditions does not
contain an entry, the extension is generally active.

You specify the activation conditions as an array.

proper-
tyId

Specifies the ID of the property that is tested for the activation condition. The available values are
described in more detail below.

operator The operator specifies how a sub-condition is evaluated.

The following operator is available:

or: An or condition is fulfilled if the current value of the property corresponds to one of the values.
Capitalization is not taken into account.

notOr: A notOr condition is fulfilled if the current value of the property does not correspond to any of
the values. Capitalization is not taken into account.

values Specifies the values in the form of an array that is compared with the value of the propertyId
property.

context - Specifies the extension point to which you want to add the extension.

Enter the following value for extensions of the View perspective in the detail view:

DmsObjectDetailsPreview

uriTem-
plate

- In the uriTemplate property, you define the URL that you want to be called when the user opens
the View perspective in the detail view. You can define placeholders to receive more information
about the current context. The placeholders are replaced by the actual properties when the extension
is called. The properties are transferred to the URI with URL encoding. You can find the available
placeholders below.

Note
Using a placeholder in the host part of the URL is not permitted for security
reasons and leads to an error.

While defining extensions that replace the content of the View perspective, you can use the following
values in the following areas:

• Defining activation conditions for the propertyId property
• Defining placeholders in the uriTemplate property

Topic Value Description

Repository repository.id ID of the repository as specified in the d.ecs repo app. You can find the repo-
sitory ID in the detail section of the d.3 repositories feature (https://<Base
address>/repo/repositories/). You can obtain this ID either by using the URL or
clicking All Programs > d.velop > d.3one > Repository Configuration in the Start
menu.

In the chapter Determining a repository, you can learn how to determine the ID
for a repository with the program.

DMS-App-API

82

Topic Value Description

User user.d3.group_id Activation condition: ID of a d.3 user group (maximum of eight characters) of
which the user that is currently logged in is a member.

Placeholder uriTemplate: List of IDs of the d.3 user groups (each a maximum of
eight characters) of which the user currently logged in is a member as an array in
JSON format.

user.idp.group_id Activation condition: GUID of an identity provider app user group of which the
user that is currently logged in is a member.

Placeholder uriTemplate: List of GUIDs of the identity provider app user groups
of which the user currently logged in is a member as an array in JSON format.

Property for
the item

dmsobject.property_edi-
tor

Editor of the item.

dmsobject.proper-
ty_owner

Owner of the item.

dmsobject.property_file-
name

File name for the item.

dmsobject.property_file-
type

File type for the item.

dmsobject.proper-
ty_document_number

Document number of the item.

dmsobject.property_cre-
ation_date

Creation date of the item.

dmsobject.property_size File size of the item.

dmsobject.proper-
ty_state

Document status of the item.

Possible values:

• Archived: The element has the Archive status.
• VerificationInProgress: The element has the Verification status.
• Processing: The element has the Processing status.
• Released: The element has the Released status.

dmsobject.property_var-
iant_number

Variant number of the item.

dmsobject.property_ac-
cess_date

Access date for the item.

dmsobject.property_re-
mark

Remarks about the item.

dmsobject.proper-
ty_last_alteration_date

Alteration date of the item.

dmsobject.proper-
ty_caption

Title for the item.

dmsobject.property_cat-
egory

Item category ID.

dmsobject.property_cat-
egory_uuid

UUID of the item category.

dmsobject.property_col-
orcode

Color marking for the item.

dmsobject.proper-
ty_document_class

Activation condition: A document class ID for the item.

Placeholder uriTemplate: List of document class IDs for the item as an array in
JSON format.

dmsobject.proper-
ty_document_id

Document ID of the item.

dmsobject.property_dis-
play_version_id

Unique ID for the display version for the DMSApp.

dmsobject.property_ver-
sion_id

Unique ID for the current version for the DMSApp.

DMS-App-API

83

Topic Value Description

dmsobject.type The item type.

Possible values:

• Document: The item is an item of the "Document" type.
• Dossier: The item is an item of the "Dossier" type.

dmsobject.<NUM-
BER|UUID>

For the <NUMBER|UUID> placeholder, enter the advanced property ID or UUID
as it is defined in the d.3 repository.

If the d.3 property is a multi-value property, the placeholder will be replaced by
the first or the first filled value of the property (depending on the d.3 repository
configuration). If there are multiple values for the multi-value property, three
dots (...) are added to the value returned.

dmsobject.fieldposi-
tion.<NUMBER>

For the <NUMBER> placeholder, enter the database position of the advanced
property.

Note
We strongly recommend using the advanced property ID
(dmsobject.<NUMBER>). Use the database position only in
exceptional cases when the advanced property ID is not
available to you or can only be determined in a very time-
consuming process.

If the d.3 property is a multi-value property, the placeholder will be replaced by
the first or the first filled value of the property (depending on the d.3 repository
configuration). If there are multiple values for the multi-value property, three
dots (...) are added to the value returned.

dmsobject.self_url_rela-
tive

Relative URL of the item.

Original file for
the item

dmsobject.main-
blob.content_type

MIME type of the original file (e.g. text\plain or image\jpeg).

dmsobject.main-
blob.content_url

(Obsolete) Absolute URL of the original file. If the user does not have the
authorization to export the document, then this parameter is empty.

dmsobject.main-
blob.content_url_rela-
tive

Relative URL of the original file. If the user does not have the authorization to
export the document, then this parameter is empty.

dmsobject.mainblob.id ID of the original file if the user has the right to export the original file.

Dependent
files for the
item

dmsobject.dependent-
blobs

List of the IDs of dependent files if the user has the right to export the depend-
ent file.

dmsobject.dependent-
blob.ID.content_url

(Obsolete) Absolute URL of the dependent file with the ID from dmsobject.de-
pendentblobs.

dmsobject.dependent-
blob.ID.content_url_rel-
ative

Relative URL of the dependent file with the ID from dmsobject.dependentblobs.

DMS-App-API

84

	DMS-App-API
	Table of Contents
	1. DMS-App-API
	1.1. Introduction
	1.1.1. About the DMSApp API
	1.1.2. Scope of functions of DMSApp
	1.1.3. Prerequisites

	1.2. Notes about support for API programming
	1.3. Technical background information
	1.3.1. Basic information about mapping
	1.3.2. Basic knowledge about authentication
	1.3.3. Basic information about write access

	1.4. Using the API functions
	1.4.1. General information about API functions (DMSApp)
	Determining a repository
	Overview of formats for errors

	1.4.2. Calling the web interface with a URL (DMSApp)
	Displaying the storage dialog
	Viewing the details of a DMS object
	Displaying the preview of a DMS object
	Searching for DMS objects
	Defining search operations
	Viewing the results of a search operation
	Defining the parameters for a search operation and a result list

	1.4.3. Connecting external systems (DMSApp)
	Defining a source system
	Retrieving the default source system for a d.3 repository
	Retrieving and viewing the results of a search operation
	Retrieving and viewing the details of a DMS object
	Storage of DMS objects
	Storing a new DMS object without user interaction
	Updating a DMS object without user interaction
	Storing new DMS objects with user interaction
	Updating DMS objects with user interaction
	Changing the current editor and document status
	General information about the storage process
	Defining the parameters for storing
	Provision of files
	Providing a file with a URL
	Providing a file via temporary upload

	Response format for errors
	Format of the response for successful requests with detailed information
	Feedback using "SuccessCallback" and "Userdata"

	Deleting the current version of a DMS object without user interaction
	Retrieving, saving and editing mapping
	Retrieving and saving the notes of a DMS object
	Retrieving and displaying the versions of a DMS object
	Linking DMS objects
	Removing a DMS object link

	1.4.4. Adding your own functions (DMSApp)
	Using extension points
	Adding context actions to lists
	Adding context actions to detail view
	Replacing the content of the "View" perspective in the detail view

